Unified Approach to Starlike and Convex Functions Involving Convolution Between Analytic Functions

被引:0
|
作者
Syed Zakar Hussain Bukhari
Janusz Sokol
Sidra Zafar
机构
[1] Mirpur University of Science and Technology (MUST),Department of Mathematics
[2] Rzeszow University of Technology,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
Carathéodory functions; convolution; subordination; subordinating factor sequence; Primary 30C45; Secondary 30C80;
D O I
暂无
中图分类号
学科分类号
摘要
Using the idea of convolution between analytic functions, we define a class UM(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}(g,\gamma ,b,k)$$\end{document} of analytic functions comprising of starlike and convex functions. These functions map the open unit disc on to the conic domains. We derive some sufficient conditions and then use them to define the class UM∗(g,γ,b,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {UM}^{*}(g,\gamma ,b,k)$$\end{document}. Making use of an increasing factor sequence, we discuss a subordination result. We may relate our findings with the previously known results.
引用
收藏
相关论文
共 50 条
  • [1] Unified Approach to Starlike and Convex Functions Involving Convolution Between Analytic Functions
    Bukhari, Syed Zakar Hussain
    Sokol, Janusz
    Zafar, Sidra
    RESULTS IN MATHEMATICS, 2018, 73 (01)
  • [3] On the convolution and subordination of convex functions
    Piejko, Krzysztof
    Sokol, Janusz
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 448 - 453
  • [4] Subordination Results for Certain Subclasses of Uniformly Starlike and Convex Functions Defined by Convolution
    Aouf, M. K.
    El-Ashwah, R. M.
    El-Deeb, S. M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (05): : 903 - 917
  • [5] Subclasses of Multivalent Starlike and Convex Functions
    Ali, Rosihan M.
    Ravichandran, V.
    Lee, See Keong
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (03) : 385 - 394
  • [6] Criteria for starlike and convex functions of order α
    Neng Xu
    Ding-Gong Yang
    Journal of Inequalities and Applications, 2015
  • [7] Certain subclasses of multivalent uniformly starlike and convex functions involving a linear operator
    Patel, J.
    Sahoo, A. Ku.
    Cho, N. E.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (05) : 812 - 829
  • [8] On the Convolution of a Finite Number of Analytic Functions Involving a Generalized Srivastava–Attiya Operator
    Poonam Sharma
    Ravinder Krishna Raina
    Janusz Sokół
    Mediterranean Journal of Mathematics, 2016, 13 : 1535 - 1553
  • [9] Criteria for starlike and convex functions of order α
    Xu, Neng
    Yang, Ding-Gong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [10] THE CONVOLUTION OF FINITE NUMBER OF ANALYTIC FUNCTIONS
    Sharma, Poonam
    Raina, Ravinder Krishna
    Sokol, Janusz
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 105 (119): : 49 - 63