Numerical radius orthogonality in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras

被引:0
作者
Ali Zamani
Paweł Wójcik
机构
[1] Farhangian University,Department of Mathematics
[2] Pedagogical University of Cracow,Institute of Mathematics
关键词
Birkhoff–James orthogonality; -algebra; Numerical radius; State; 46L05; 47A12; 46B20; 46C50;
D O I
10.1007/s43034-020-00071-z
中图分类号
学科分类号
摘要
In this paper we characterize the Birkhoff–James orthogonality with respect to the numerical radius norm v(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(\cdot )$$\end{document} in C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras. More precisely, for two elements a, b in a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {A}$$\end{document}, we show that a⊥Bvb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\perp _{B}^{v} b$$\end{document} if and only if for each θ∈[0,2π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [0, 2\pi )$$\end{document}, there exists a state φθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi _{_{\theta }}$$\end{document} on A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {A}$$\end{document} such that |φθ(a)|=v(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\varphi _{_{\theta }}(a)| = v(a)$$\end{document} and Re(eiθφθ(a)¯φθ(b))≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ Re }\big (e^{i\theta }\overline{\varphi _{_{\theta }}(a)}\varphi _{_{\theta }}(b)\big )\ge 0$$\end{document}. Moreover, we compute the numerical radius derivatives in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {A}$$\end{document}. In addition, we characterize when the numerical radius norm of the sum of two (or three) elements in A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {A}$$\end{document} equals the sum of their numerical radius norms.
引用
收藏
页码:1081 / 1092
页数:11
相关论文
共 20 条
[1]  
Abu-Omar A(2015)Notes on some spectral radius and numerical radius inequalities Stud. Math. 227 97-109
[2]  
Kittaneh F(2014)A strong version of the Birkhoff-James orthogonality in Hilbert Ann. Funct. Anal. 5 109-120
[3]  
Arambašić LJ(2012)-modules Linear Algebra Appl. 437 1913-1929
[4]  
Rajić R(1999)The Birkhoff–James orthogonality in Hilbert Linear Algebra Appl. 287 77-85
[5]  
Arambašić LJ(2013)-modules J. Math. Anal. Appl. 407 350-358
[6]  
Rajić R(1935)Orthogonality of matrices and some distance problems Duke Math. J. 1 169-172
[7]  
Bhatia R(1945)Characterization of Birkhoff–James orthogonality Duke Math. J. 12 291-302
[8]  
Šemrl P(2019)Orthogonality in linear metric spaces J. Math. Anal. Appl. 474 1488-1497
[9]  
Bhattacharyya T(1999)Orthogonality in normed linear spaces Sci. Math. 2 119-122
[10]  
Grover P(2016)On symmetry of Birkhoff orthogonality in the positive cones of Oper. Matrices 10 713-729