The Shapley-Shubik index, the donation paradox and ternary games

被引:0
|
作者
Vincent C. H. Chua
H. C. Huang
机构
[1]  School of Economics and Social Sciences,
[2] Singapore Management University,undefined
[3] 469 Bukit Timah Road,undefined
[4] Singapore 259756,undefined
[5] Singapore (e-mail: vincentchua@smu.edu.sg),undefined
[6]  Department of Industrial and Systems Engineering,undefined
[7] National University of Singapore,undefined
[8] Kent Ridge Crescent,undefined
[9] Singapore 119260,undefined
[10] Singapore,undefined
来源
Social Choice and Welfare | 2003年 / 20卷
关键词
Vote Power; Binary Game; Donation Paradox;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show that although the Shapley-Shubik index is immune to the donation paradox in weighted binary games, extension of the index to ternary games along the direction suggested in Felsenthal and Machover (1996, 1997) will cause it to be vulnerable to the paradox and this is the case as long as the number of players in the game exceeds three. This undermines the attractiveness of the Shapley-Shubik index as a measure of a priori voting power.
引用
收藏
页码:387 / 403
页数:16
相关论文
共 47 条
  • [1] The Shapley-Shubik index, the donation paradox and ternary games
    Chua, VCH
    Huang, HC
    SOCIAL CHOICE AND WELFARE, 2003, 20 (03) : 387 - 403
  • [2] The conditional Shapley-Shubik measure for ternary voting games
    Friedman, Jane
    Parker, Cameron
    GAMES AND ECONOMIC BEHAVIOR, 2018, 108 : 379 - 390
  • [3] The Shapley-Shubik index for simple games with multiple alternatives
    Carreras, Francesc
    Magana, Antonio
    ANNALS OF OPERATIONS RESEARCH, 2008, 158 (01) : 81 - 97
  • [4] The Shapley-Shubik index for multi-criteria simple games
    Monroy, Luisa
    Fernandez, Francisco R.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 209 (02) : 122 - 128
  • [5] Confidence Intervals for the Shapley-Shubik Power Index in Markovian Games
    Avrachenkov, Konstantin
    Cottatellucci, Laura
    Maggi, Lorenzo
    DYNAMIC GAMES AND APPLICATIONS, 2014, 4 (01) : 10 - 31
  • [6] An asymmetric Shapley-Shubik power index
    Hu, Xingwei
    INTERNATIONAL JOURNAL OF GAME THEORY, 2006, 34 (02) : 229 - 240
  • [7] The Shapley-Shubik power index for dichotomous multi-type games
    Courtin, Sebastien
    Nganmeni, Zephirin
    Tchantcho, Bertrand
    THEORY AND DECISION, 2016, 81 (03) : 413 - 426
  • [8] Alternative forms of the Shapley value and the Shapley-Shubik index
    Felsenthal, DS
    Machover, M
    PUBLIC CHOICE, 1996, 87 (3-4) : 315 - 318
  • [9] The Shapley-Shubik power index for games with several levels of approval in the input and output
    Freixas, J
    DECISION SUPPORT SYSTEMS, 2005, 39 (02) : 185 - 195
  • [10] On the externality-free Shapley-Shubik index
    Alvarez-Mozos, M.
    Alonso-Meijide, J. M.
    Fiestras-Janeiro, M. G.
    GAMES AND ECONOMIC BEHAVIOR, 2017, 105 : 148 - 154