A p-adic Maass–Shimura operator on Mumford curves

被引:0
作者
Matteo Longo
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica Tullio Levi
来源
Annales mathématiques du Québec | 2023年 / 47卷
关键词
-adic uniformisation; Shimura curves; Maass–Shimura operators; 11F03; 14F40; 11R52;
D O I
暂无
中图分类号
学科分类号
摘要
We study a p-adic Maass–Shimura operator in the context of Mumford curves defined by [15]. We prove that this operator arises from a splitting of the Hodge filtration, thus answering a question in [15]. We also study the relation of this operator with generalized Heegner cycles, in the spirit of [1, 4, 19, 28].
引用
收藏
页码:139 / 175
页数:36
相关论文
共 31 条
  • [1] Bosch Siegfried(1998)Coherent modules and their descent on relative rigid spaces J. Reine Angew. Math. 495 119-134
  • [2] Görtz Ulrich(1983)-isocrystals and de Rham cohomology. I Invent. Math. 72 159-199
  • [3] Berthelot P(1997)Integral models of certain Shimura curves Duke Math. J. 87 591-612
  • [4] Ogus A(1998)Cohomologie cristalline: un survol Exposition. Math. 16 333-382
  • [5] Buzzard Kevin(1976)Coverings of Funkcional. Anal. i Priložen. 10 29-40
  • [6] Chambert-Loir Antoine(1997)-adic symmetric domains J. Algebraic Geom. 6 1-18
  • [7] Drinfel’d VG(1981)Crystalline cohomology of semistable curve–the Ann. Sci. École Norm. Sup. (4) 14 77-120
  • [8] Faltings Gerd(1995)-theory Osaka J. Math. 32 533-546
  • [9] Harris Michael(2001)Special values of zeta functions attached to Siegel modular forms Duke Math. J. 110 253-278
  • [10] Hashimoto Ki-ichiro(2003)Explicit form of quaternion modular embeddings Invent. Math. 154 333-384