Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models

被引:0
|
作者
Matt Whiley
Simon P. Wilson
机构
[1] Trinity College,Department of Statistics
来源
Statistics and Computing | 2004年 / 14卷
关键词
Bayesian inference; latent models; linear algebra; Markov chain Monte Carlo; parallel algorithms; spatial modelling;
D O I
暂无
中图分类号
学科分类号
摘要
Markov chain Monte Carlo (MCMC) implementations of Bayesian inference for latent spatial Gaussian models are very computationally intensive, and restrictions on storage and computation time are limiting their application to large problems. Here we propose various parallel MCMC algorithms for such models. The algorithms' performance is discussed with respect to a simulation study, which demonstrates the increase in speed with which the algorithms explore the posterior distribution as a function of the number of processors. We also discuss how feasible problem size is increased by use of these algorithms.
引用
收藏
页码:171 / 179
页数:8
相关论文
共 50 条
  • [31] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    Oscar V. De la Torre-Torres
    Dora Aguilasocho-Montoya
    José Álvarez-García
    Biagio Simonetti
    Soft Computing, 2020, 24 : 13823 - 13836
  • [32] The Convergence of Markov Chain Monte Carlo Methods: From the Metropolis Method to Hamiltonian Monte Carlo
    Betancourt, Michael
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [33] Markov chain Monte Carlo methods for radiation hybrid mapping
    Heath, SC
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1997, 4 (04) : 505 - 515
  • [34] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    De la Torre-Torres, Oscar, V
    Aguilasocho-Montoya, Dora
    Alvarez-Garcia, Jose
    Simonetti, Biagio
    SOFT COMPUTING, 2020, 24 (18) : 13823 - 13836
  • [35] Markov Chain Monte Carlo methods for estimating surgery duration
    Luangkesorn, K. L.
    Eren-Dogu, Z. F.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 262 - 278
  • [36] Markov chain Monte Carlo methods with applications to signal processing
    Fitzgerald, WJ
    SIGNAL PROCESSING, 2001, 81 (01) : 3 - 18
  • [37] Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆
    Hunt-Smith, N. T.
    Melnitchouk, W.
    Ringer, F.
    Sato, N.
    Thomas, A. W.
    White, M. J.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 296
  • [38] On parallelizable Markov chain Monte Carlo algorithms with waste-recycling
    Shihao Yang
    Yang Chen
    Espen Bernton
    Jun S. Liu
    Statistics and Computing, 2018, 28 : 1073 - 1081
  • [39] Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny
    Mossel, Elchanan
    Vigoda, Eric
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (04): : 2215 - 2234
  • [40] Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
    Livingstone, Samuel
    Girolami, Mark
    ENTROPY, 2014, 16 (06): : 3074 - 3102