Encoding feature set information in heterogeneous graph neural networks for game provenance

被引:0
作者
Sidney Melo
Luís Fernando Bicalho
Leonardo Camacho de Oliveira Joia
José Ricardo da Silva Junior
Esteban Clua
Aline Paes
机构
[1] Federal Fluminense University,Institute of Computing
[2] Pontifical Catholic University of Rio de Janeiro,Department of Informatics
[3] Federal Institute of Rio de Janeiro,Computing Department
来源
Applied Intelligence | 2023年 / 53卷
关键词
Game analytics; Game provenance graphs; Graph neural networks; Heterogeneous graphs;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:29024 / 29042
页数:18
相关论文
共 78 条
  • [1] Bauckhage C(2015)The age of analytics IEEE Trans. Comput. Intell. AI Games 7 205-206
  • [2] Drachen A(2014)Plato: A visual analytics system for gameplay data Computers Graphics. 38 341-356
  • [3] Thurau C(2020)Graph representation learning Synthesis Lectures on Artificial Intelligence and Machine Learning. 14 1-159
  • [4] Wallner G(2013)Representation learning: A review and new perspectives IEEE Trans. Pattern Anal. Mach. Intell 35 1798-1828
  • [5] Kriglstein S(2022)Improving graph neural network expressivity via subgraph isomorphism counting IEEE Transactions on Pattern Analysis and Machine Intelligence 45 657-668
  • [6] Hamilton WL(2017)Oh gosh!! why is this game so hard? identifying cycle patterns in 2d platform games using provenance data Entertain Comput 19 65-81
  • [7] Bengio Y(2019)Detecting long-range cause-effect relationships in game provenance graphs with graph-based representation learning Entertain Comput 32 992-1003
  • [8] Courville A(2011)Pathsim: Meta path-based top-k similarity search in heterogeneous information networks Proceedings of the VLDB Endowment 4 415-436
  • [9] Vincent P(2023)A survey on heterogeneous graph embedding: Methods, techniques, applications and sources IEEE Trans. Big Data 9 31-36
  • [10] Bouritsas G(2005)A survey of data provenance in e-science SIGMOD Rec. 34 15-20