Some metrization problem on ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-generalized metric spaces

被引:0
作者
Tomonari Suzuki
机构
[1] Kyushu Institute of Technology,Department of Basic Sciences, Faculty of Engineering
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2019年 / 113卷 / 2期
关键词
-generalized metric space; Metrizability; Completeness; Compactness; Primary 54E35; Secondary 54E50;
D O I
10.1007/s13398-018-0544-6
中图分类号
学科分类号
摘要
Very recently, Dung and Hang (Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, https://doi.org/10.1007/s13398-017-0425-4, 2017) gave a sufficient condition for some metrization problem on ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-generalized metric spaces. Strongly motivated by their result, we give sufficient and necessary conditions on the conclusion of their theorem. We also give sufficient and necessary conditions on the assumption of their theorem. Thus we could tell that we almost complete the metrization problem on ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}-generalized metric spaces with respect to their method.
引用
收藏
页码:1267 / 1278
页数:11
相关论文
共 20 条
[1]  
Branciari A(2000)A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces Publ. Math. Debr. 57 31-37
[2]  
Kumam P(2014)Some remarks on generalized metric spaces of Branciari Sarajev. J. Math. 10 209-219
[3]  
Dung NV(2009)Contractions over generalized metric spaces J. Nonlinear Sci. Appl. 2 180-182
[4]  
Ramabhadra Sarma I(2016)Completeness of Filomat 30 3575-3585
[5]  
Madhusudana Rao J(2016)-generalized metric spaces Linear Nonlinear Anal. 2 271-279
[6]  
Rao SS(2016)Another generalization of Edelstein’s fixed point theorem in generalized metric spaces Bull. Kyushu Inst. Technol. 63 1-13
[7]  
Suzuki T(2017)Numbers on diameter in Fixed Point Theory Appl. 2017 18-309
[8]  
Suzuki T(2018)-generalized metric spaces Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 112 301-23
[9]  
Suzuki T(2015)Nadler’s fixed point theorem in Bull. Kyushu Inst. Technol. 62 15-517
[10]  
Suzuki T(2015)-generalized metric spaces Open Math. 13 510-2309