On Conjugate Points and Geodesic Loops in a Complete Riemannian Manifold

被引:0
作者
Shicheng Xu
机构
[1] Capital Normal University,School of Mathematics
来源
The Journal of Geometric Analysis | 2016年 / 26卷
关键词
Geodesic; Cut point; Conjugate point; Injectivity radius; Primary 53C22; Secondary 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
A well-known lemma in Riemannian geometry by Klingenberg says that if x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} is a minimum point of the distance function d(p,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(p,\cdot )$$\end{document} to p in the cut locus Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document} of p, then either there is a minimal geodesic from p to x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} along which they are conjugate, or there is a geodesic loop at p that smoothly goes through x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. In this paper, we prove that: for any point q and any local minimum point x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} of Fq(·)=d(p,·)+d(q,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\cdot )=d(p,\cdot )+d(q,\cdot )$$\end{document} in Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document}, either x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} is conjugate to p along each minimal geodesic connecting them, or there is a geodesic from p to q passing through x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. In particular, for any local minimum point x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} of d(p,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(p,\cdot )$$\end{document} in Cp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document}, either p and x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document} are conjugate along every minimal geodesic from p to x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}, or there is a geodesic loop at p that smoothly goes through x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. Earlier results based on injectivity radius estimate would hold under weaker conditions.
引用
收藏
页码:2221 / 2230
页数:9
相关论文
共 15 条
[1]  
Abresch U(1997)Injectivity radius estimates and sphere theorems Comp. Geom. 30 1-47
[2]  
Meyer WT(1970)Finiteness theorems for Riemannian manifolds Am. J. Math. 92 61-74
[3]  
Cheeger J(1972)On the structure of complete manifolds of nonnegative curvature Ann. Math. 96 413-443
[4]  
Cheeger J(1987)Collapsing Riemannian manifolds to ones of lower dimensions J. Differ. Geom. 25 139-156
[5]  
Gromoll D(1969)On complete open manifolds of positive curvature Ann. Math. 90 75-90
[6]  
Fukaya K(2012)The cut loci, conjugate loci and poles in a complete Riemannian manifold Geom. Funct. Anal. 22 1400-1406
[7]  
Gromoll D(1959)Contributions to Riemannian geometry in the large Ann. Math. 69 654-666
[8]  
Meyer W(2004)On the geometry of positively curved manifolds with large radius Ill. J. Math. 48 89-96
[9]  
Innami N(2006)A round sphere theorem for positive sectional curvature Compos. Math. 142 1327-1331
[10]  
Shiohama K(1991)Collapsing and pinching under a lower curvature bound Ann. Math. 133 317-357