A Machine Learning-Based Method to Identify Bipolar Disorder Patients

被引:0
作者
J. Mateo-Sotos
A. M. Torres
J. L. Santos
O. Quevedo
C. Basar
机构
[1] Universidad de Castilla-La Mancha,Neurobiological Research Group. Institute of Technology
[2] Virgen de la Luz Hospital,Clinical Psichiatricy Service
[3] School of Electrical Engineering and Computer Science at KTH Royal Institute of Technology,undefined
[4] University of Bremen,undefined
来源
Circuits, Systems, and Signal Processing | 2022年 / 41卷
关键词
Machine learning; Extreme gradient boosting; Biomedical signals; Bipolar disorders;
D O I
暂无
中图分类号
学科分类号
摘要
Bipolar disorder is a serious psychiatric disorder characterized by periodic episodes of manic and depressive symptomatology. Due to the high percentage of people suffering from severe bipolar and depressive disorders, the modelling, characterisation, classification and diagnostic analysis of these mental disorders are of vital importance in medical research. Electroencephalogram (EEG) records offer important information to enhance clinical diagnosis and are widely used in hospitals. For this reason, EEG records and patient data from the Virgen de la Luz Hospital were used in this work. In this paper, an extreme gradient boosting (XGB) machine learning (ML) method involving an EEG signal is proposed. Four supervised ML algorithms including a k-nearest neighbours (KNN), decision tree (DT), Gaussian Naïve Bayes (GNB) and support vector machine (SVM) were compared with the proposed XGB method. The performance of these methods was tested implementing a standard 10-fold cross-validation process. The results indicate that the XGB has the best prediction accuracy (94%), high precision (>0.94\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>0.94$$\end{document}) and high recall (>0.94\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>0.94$$\end{document}). The KNN, SVM, and DT approaches also present moderate prediction accuracy (>87\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>87$$\end{document}), moderate recall (>0.87\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>0.87$$\end{document}) and moderate precision (>0.87\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$>0.87$$\end{document}). The GNB algorithm shows relatively low classification performance. Based on these results for classification performance and prediction accuracy, the XGB is a solid candidate for a correct classification of patients with bipolar disorder. These findings suggest that XGB system trained with clinical data may serve as a new tool to assist in the diagnosis of patients with bipolar disorder.
引用
收藏
页码:2244 / 2265
页数:21
相关论文
共 240 条
[1]  
Accardo A(1997)Use of the fractal dimension for the analysis of electroencephalographic time series Biol. Cybern. 77 339-350
[2]  
Affinito M(2005)Non-linear analysis of EEG signals at various sleep stages Comput. Methods Programs Biomed. 80 37-45
[3]  
Carrozzi M(2018)Classification of bipolar disorder and schizophrenia using steady-state visual evoked potential based features IEEE Access 6 40379-40388
[4]  
Bouquet F(2006)Comparison of AR and welch methods in epileptic seizure detection J. Med. Syst. 30 413-419
[5]  
Acharya R(1998)The emerging epidemiology of hypomania and bipolar II disorder J. Affect. Disord. 50 143-151
[6]  
Faust O(2010)Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fmri data IEEE Trans. Bio-Med. Eng. 57 2850-2860
[7]  
Kannathal N(2019)Predominant polarity classification and associated clinical variables in bipolar disorder: A machine learning approach J. Affect. Disord. 245 279-282
[8]  
Chua T(2003)Economic consequences of not recognizing bipolar disorder patients: A cross-sectional descriptive analysis J. Clin. Psychiatry 64 1201-1209
[9]  
Laxminarayan S(2019)A new hybrid XGBSVM model: Application for hypertensive heart disease IEEE Access 7 175248-175258
[10]  
Alimardani F(2017)Radar emitter classification for large data set based on weighted-xgboost IET Radar, Sonar Navigation 11 1203-1207