Al-doped Li1.21[Mn0.54Ni0.125Co0.125]O2 cathode material with enhanced electrochemical properties for lithium-ion battery

被引:0
|
作者
R. Etefagh
S. M. Rozati
H. Arabi
机构
[1] University Campus,Department of Physics
[2] University of Guilan,Department of Physics
[3] University of Guilan,Renewable Energies, Magnetism and Nanotechnology Research Lab, Department of Physics
[4] Ferdowsi University of Mashhad,undefined
来源
Applied Physics A | 2020年 / 126卷
关键词
Li[Li; Ni; Mn; -xCo; ]InxO; Cathode; Sol gel; Al doping;
D O I
暂无
中图分类号
学科分类号
摘要
Layered Li-rich Mn-based oxides are believed to be a good candidate for cathode material in the next generation of lithium-ion batteries. However, they have some disadvantages, such as low initial coulombic efficiency, low rate capacity, and deficient cyclability. To overcome these shortcomings, various approaches, such as elemental doping, have been adopted. In this study, Al-doped Li1.21Mn0.54Ni0.125Co0.125O2 were successfully synthesized using the sol–gel method. Samples were characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), surface-area analysis, field emission scanning electron microscopy and transmission electron microscopy (TEM). Measurements of galvanostatic charge discharge and electrochemical impedance spectroscopy were also performed to evaluate the electrochemical performance of the prepared samples. The XRD patterns showed that all the samples with the structure of 0.55Li2MnO3.0.45LiNi0.33Mn0.33Co0.33O2 had a composite material with two individual layered structures that are integrated with each other. By doping Al, the lattice parameters of the samples changed. The first discharge capacity of the Al-doped specimens was lower than that of the pristine sample. In cycling performance results, it is clear that cyclic behavior and capacity stability rate in doped samples have improved compared to the undoped sample, and in the meantime, the sample with 0.05 aluminum doping has shown the best performance. Optimal performance of the doped specimens can be related to lower load transfer resistance and better structural stability.
引用
收藏
相关论文
共 50 条
  • [21] Preparation and Electrochemical Performance of Yttrium-doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as Cathode Material for Lithium-Ion Batteries
    Kang, Shifei
    Qin, Hengfei
    Fang, Yao
    Li, Xi
    Wang, Yangang
    ELECTROCHIMICA ACTA, 2014, 144 : 22 - 30
  • [22] Synthesis and Electrochemical Performance of Li-rich Cathode Material Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2 in the Lithium-Ion Battery
    Zhang Hai-Lang
    Ye Yan-Yan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10718 - 10725
  • [23] Influences of FeF3 coating layer on the electrochemical properties of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries
    Li, Cheng-Dong
    Xu, Jin
    Xia, Ji-Sheng
    Liu, Wei
    Xiong, Xin
    Zheng, Zhu-An
    SOLID STATE IONICS, 2016, 292 : 75 - 82
  • [24] Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium-ion batteries with enhanced electrochemical performance
    Zhou, Lin
    Liu, Jing
    Huang, Lisi
    Jiang, Na
    Zheng, Qiaoji
    Lin, Dunmin
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (12) : 3467 - 3477
  • [25] Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method
    Wei, Xin
    Zhang, Shichao
    Du, Zhijia
    Yang, Puheng
    Wang, Jing
    Ren, Yanbiao
    ELECTROCHIMICA ACTA, 2013, 107 : 549 - 554
  • [26] Graphene modified Li- rich cathode material Li[Li0.26Ni0.07Co0.07Mn0.56]O2 for lithium ion battery
    Li, Xiangjun
    Xin, Hongxing
    Qin, Xiaoying
    Yuan, Xueqin
    Li, Di
    Zhang, Jian
    Song, Chunjun
    Wang, Ling
    Sun, Guolong
    Liu, Yongfei
    FUNCTIONAL MATERIALS LETTERS, 2014, 7 (06)
  • [27] Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries
    He, Wei
    Qian, Jiangfeng
    Cao, Yuliang
    Ai, Xinping
    Yang, Hanxi
    RSC ADVANCES, 2012, 2 (08): : 3423 - 3429
  • [28] Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by Mg doping for lithium ion battery cathode material
    Xu, Hongjie
    Deng, Shengnan
    Chen, Guohua
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (36) : 15015 - 15021
  • [29] Extending the Battery Life Using an Al-Doped Li[Ni0.76Co0.09Mn0.15]O2 Cathode with Concentration Gradients for Lithium Ion Batteries
    Kim, Un-Hyuck
    Myung, Seung-Taek
    Yoon, Chong S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2017, 2 (08): : 1848 - 1854
  • [30] Synthesis, characterization, and electrochemistry of cathode material Li [Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries
    Zhao, Taolin
    Chen, Shi
    Li, Li
    Zhang, Xiaofeng
    Chen, Renjie
    Belharouak, Ilias
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2013, 228 : 206 - 213