Global higher integrability for minimisers of convex obstacle problems with (p,q)-growth

被引:0
作者
Lukas Koch
机构
[1] Max-Planck Institut for Mathematics in the Sciences,
来源
Calculus of Variations and Partial Differential Equations | 2022年 / 61卷
关键词
35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
We prove global W1,q(Ω,RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,q}(\Omega ,{\mathbb {R}}^N)$$\end{document}-regularity for minimisers of F(u)=∫ΩF(x,Du)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathscr {F}}(u)=\int _\Omega F(x,Du)\,{\mathrm{d}}x}$$\end{document} satisfying u≥ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\ge \psi $$\end{document} for a given Sobolev obstacle ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}. W1,q(Ω,RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,q}(\Omega ,{\mathbb {R}}^N)$$\end{document} regularity is also proven for minimisers of the associated relaxed functional. Our main assumptions on F(x, z) are a uniform α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Hölder continuity assumption in x and natural (p, q)-growth conditions in z with q<(n+α)pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<\frac{(n+\alpha )p}{n}$$\end{document}. In the autonomous case F≡F(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\equiv F(z)$$\end{document} we can improve the gap to q<minnpn-1,p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q<\min \left( \frac{np}{n-1},p+1\right) $$\end{document}, a result new even in the unconstrained case.
引用
收藏
相关论文
共 109 条
[1]  
Acerbi E(2003)Relaxation of convex functionals: the gap problem Ann. Inst. Henri Poincare Anal. Non Lineare 20 359-390
[2]  
Bouchitté G(2015)Optimal regularity for the obstacle problem for the p-Laplacian J. Differ. Equ. 259 2167-2179
[3]  
Fonseca I(2018)Regularity for general functionals with double phase Calc. Var. Partial Differ. Equ. 57 1-48
[4]  
Andersson J(2020)On the regularity of minimizers for scalar integral functionals with (p, q)-growth Anal. PDE 13 2241-2257
[5]  
Lindgren E(2021)Regularity for obstacle problems without structure conditions Nonlinear Anal. Real World Appl. 62 103353-972
[6]  
Shahgholian H(2012)Higher integrability in parabolic obstacle problems Forum Math. 24 931-844
[7]  
Baroni P(1973)The smoothness of solutions to nonlinear variational inequalities Indiana Univ. Math. J. 23 831-27
[8]  
Colombo M(1995)A survey of old and recent results about the gap phenomenon in the calculus of variations Math. Appl. 331 1-460
[9]  
Mingione G(1992)Interpretation of the Lavrentiev phenomenon by relaxation J. Funct. Anal. 2 434-669
[10]  
Bella P(2020)Nonlinear obstacle problems with double phase in the borderline case Math. Nachr. 293 651-3854