Nonlinear convective stability problems of viscoelastic fluids in finite domains

被引:0
|
作者
H. Park
D. Ryu
机构
[1] Department of Chemical Engineering,
[2] Sogang University,undefined
[3] Seoul,undefined
[4] Korea,undefined
来源
Rheologica Acta | 2002年 / 41卷
关键词
Rayleigh-Bénard convection Viscoelastic fluids Finite domains;
D O I
暂无
中图分类号
学科分类号
摘要
A Chebyshev pseudospectral method is generalized to solve the nonlinear hydrodynamic stability problems of Rayleigh-Bénard convection of viscoelastic fluids in finite domains, which are compatible with the experimental situations, for the range of viscoelastic parameters where the exchange of stabilities is valid. The effects of box aspect ratio, the Deborah number λ and the dimensionless retardation time ε on the critical Rayleigh number and convection intensity are investigated. The comparison of these results with the experimental data might be used to guide the selection of constitutive equations and to estimate viscoelastic parameter values. The present technique of hydrodynamic stability analysis is quite versatile and can be employed to solve other hydrodynamic stability problems in finite domains.
引用
收藏
页码:427 / 440
页数:13
相关论文
共 50 条
  • [31] A STABILITY RESULT FOR NONLINEAR NEUMANN PROBLEMS IN REIFENBERG FLAT DOMAINS IN RN
    Lemenant, Antoine
    Milakis, Emmanouil
    PUBLICACIONS MATEMATIQUES, 2011, 55 (02) : 413 - 432
  • [32] Nonlinear behavior of electrohydrodynamic flow in viscoelastic fluids
    Su, Zheng-Gang
    Li, Tian-Fu
    Luo, Kang
    Yi, Hong-Liang
    PHYSICAL REVIEW FLUIDS, 2021, 6 (09)
  • [33] Probing linear and nonlinear microrheology of viscoelastic fluids
    Gomez-Solano, J. R.
    Bechinger, C.
    EPL, 2014, 108 (05)
  • [34] Nonlinear oscillations of gas bubbles in viscoelastic fluids
    Shima, A.
    Tsujino, T.
    Nanjo, H.
    1600, (24):
  • [35] On the criteria of the absolute convective stability for compressible fluids
    Ramazanov M.M.
    Fluid Dynamics, 2014, 49 (5) : 585 - 595
  • [36] THERMO-CONVECTIVE STABILITY IN RADIATIVE FLUIDS
    LALLEMAND, M
    KUNC, T
    MARTINET, J
    REVUE GENERALE DE THERMIQUE, 1983, 22 (264): : 811 - 817
  • [37] Nonlinear instability of two dielectric viscoelastic fluids
    Moatimid, GM
    CANADIAN JOURNAL OF PHYSICS, 2004, 82 (12) : 1109 - 1133
  • [38] Convective stability of multicomponent fluids in the thermogravitational column
    Ryzhkov, Ilya I.
    Shevtsova, Valentina M.
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [39] Composite finite element approximation for nonlinear parabolic problems in nonconvex polygonal domains
    Pramanick, Tamal
    Sinha, Rajen Kumar
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (06) : 2316 - 2335
  • [40] EXACT-SOLUTIONS TO NONLINEAR DIFFUSION-CONVECTION PROBLEMS ON FINITE DOMAINS
    SANDER, GC
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1992, 33 : 384 - 401