Nonlinear convective stability problems of viscoelastic fluids in finite domains

被引:0
|
作者
H. Park
D. Ryu
机构
[1] Department of Chemical Engineering,
[2] Sogang University,undefined
[3] Seoul,undefined
[4] Korea,undefined
来源
Rheologica Acta | 2002年 / 41卷
关键词
Rayleigh-Bénard convection Viscoelastic fluids Finite domains;
D O I
暂无
中图分类号
学科分类号
摘要
A Chebyshev pseudospectral method is generalized to solve the nonlinear hydrodynamic stability problems of Rayleigh-Bénard convection of viscoelastic fluids in finite domains, which are compatible with the experimental situations, for the range of viscoelastic parameters where the exchange of stabilities is valid. The effects of box aspect ratio, the Deborah number λ and the dimensionless retardation time ε on the critical Rayleigh number and convection intensity are investigated. The comparison of these results with the experimental data might be used to guide the selection of constitutive equations and to estimate viscoelastic parameter values. The present technique of hydrodynamic stability analysis is quite versatile and can be employed to solve other hydrodynamic stability problems in finite domains.
引用
收藏
页码:427 / 440
页数:13
相关论文
共 50 条
  • [21] STOKES PROBLEMS FOR LINEAR VISCOELASTIC FLUIDS
    GHOSH, AK
    MITRA, S
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1977, 25 (08): : 719 - 729
  • [22] Stability of isothermal spinning of viscoelastic fluids
    Jung, HW
    Hyun, JC
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 1999, 16 (03) : 325 - 330
  • [23] An analytical approach for solving nonlinear boundary value problems in finite domains
    Liang, Songxin
    Jeffrey, David J.
    NUMERICAL ALGORITHMS, 2011, 56 (01) : 93 - 106
  • [24] ON FINITE-ELEMENT METHODS FOR NONLINEAR ELLIPTIC PROBLEMS ON DOMAINS WITH CORNERS
    DOBROWOLSKI, M
    LECTURE NOTES IN PHYSICS, 1983, 1121 : 85 - 103
  • [25] An analytical approach for solving nonlinear boundary value problems in finite domains
    Songxin Liang
    David J. Jeffrey
    Numerical Algorithms, 2011, 56 : 93 - 106
  • [26] Stability of isothermal spinning of viscoelastic fluids
    Hyun Wook Jung
    Jae Chun Hyun
    Korean Journal of Chemical Engineering, 1999, 16 : 325 - 330
  • [27] Steady Flows of Viscoelastic Fluids in Domains with Outlets to Infinity
    K. Pileckas
    A. Sequeira
    J. H. Videman
    Journal of Mathematical Fluid Mechanics, 2000, 2 : 185 - 218
  • [28] Steady Flows of Viscoelastic Fluids in Domains with Outlets to Infinity
    Pileckas, Konstantin
    Sequeira, Adelia
    Videman, Juha H.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2000, 2 (03) : 185 - 218
  • [29] BIFURCATION-ANALYSIS AND AMPLITUDE EQUATIONS FOR VISCOELASTIC CONVECTIVE FLUIDS
    MARTINEZMARDONES, J
    PEREZGARCIA, C
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1992, 14 (09): : 961 - 974
  • [30] FINITE-AMPLITUDE OSCILLATIONS OF VISCOELASTIC FLUIDS
    VRENTAS, JS
    VENERUS, DC
    VRENTAS, CM
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1991, 40 (01) : 1 - 24