On polyhedral approximations in an n-dimensional space

被引:0
作者
M. V. Balashov
机构
[1] Moscow Institute of Physics and Technology (State University),
来源
Computational Mathematics and Mathematical Physics | 2016年 / 56卷
关键词
modulus of continuity; Hausdorff metric; supporting function; grid; polyhedral approximation in R;
D O I
暂无
中图分类号
学科分类号
摘要
The polyhedral approximation of a positively homogeneous (and, in general, nonconvex) function on a unit sphere is investigated. Such a function is presupporting (i.e., its convex hull is the supporting function) for a convex compact subset of Rn. The considered polyhedral approximation of this function provides a polyhedral approximation of this convex compact set. The best possible estimate for the error of the considered approximation is obtained in terms of the modulus of uniform continuous subdifferentiability in the class of a priori grids of given step in the Hausdorff metric.
引用
收藏
页码:1679 / 1685
页数:6
相关论文
共 12 条
[1]  
Polovinkin E. S.(1996)Strongly convex analysis Sb. Math. 187 259-286
[2]  
Orlova G. B.(1997)Approximate computation of the convex hull for a positively homogeneous function Vestn. Mosk. Gos. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 2 32-35
[3]  
Silin D. B.(2001)An algorithm for the numerical solution of linear differential games Sb. Math. 192 1515-1542
[4]  
Polovinkin E. S.(1981)Linear differential games of pursuit Math. USSR-Sb. 40 285-303
[5]  
Ivanov G. E.(2007)Polyhedral approximation of convex sets Sovrem. Mat. Fundam. Napravlen. Geom. 22 5-37
[6]  
Balashov M. V.(2011)Polyhedral approximations of strictly convex compacta J. Math. Anal. Appl. 374 529-537
[7]  
Konstantinov R. V.(undefined)undefined undefined undefined undefined-undefined
[8]  
Khorev A. V.(undefined)undefined undefined undefined undefined-undefined
[9]  
Pontryagin L. S.(undefined)undefined undefined undefined undefined-undefined
[10]  
Bronshtein E. M.(undefined)undefined undefined undefined undefined-undefined