Legendre Spectral Projection Methods for Hammerstein Integral Equations with Weakly Singular Kernel

被引:0
|
作者
Panigrahi B.L. [1 ]
机构
[1] Department of Mathematics, Sambalpur University, Sambalpur, 768019, Odisha
关键词
Collocation method; Galerkin method; Hammerstein integral equations; Legendre polynomials; Spectral method; Weakly singular kernels;
D O I
10.1007/s40819-018-0580-0
中图分类号
学科分类号
摘要
In this paper, we consider the Legendre Galerkin and Legendre collocation methods for solving the Fredholm–Hammerstein integral equation with weakly singular kernels. We evaluate the convergence rates for both the methods in both L 2 and infinity-norm. To improve the convergence rates, iterated Legendre Galerkin and iterated Legendre collocation methods have been considered. We prove that iterated Legendre Galerkin methods converge faster than Legendre Galerkin methods in both L 2 and infinity-norm. Numerical examples are presented to validate the theoretical estimate. © 2018, Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [1] Legendre Spectral Projection Methods for Fredholm–Hammerstein Integral Equations
    Payel Das
    Mitali Madhumita Sahani
    Gnaneshwar Nelakanti
    Guangqing Long
    Journal of Scientific Computing, 2016, 68 : 213 - 230
  • [2] Legendre spectral projection methods for weakly singular Hammerstein integral equations of mixed type
    Patel, Subhashree
    Panigrahi, Bijaya Laxmi
    JOURNAL OF ANALYSIS, 2020, 28 (02): : 387 - 413
  • [3] Legendre spectral projection methods for weakly singular Hammerstein integral equations of mixed type
    Subhashree Patel
    Bijaya Laxmi Panigrahi
    The Journal of Analysis, 2020, 28 : 387 - 413
  • [4] Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations
    Das, Payel
    Sahani, Mitali Madhumita
    Nelakanti, Gnaneshwar
    Long, Guangqing
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 213 - 230
  • [5] Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equations
    Mandal, Moumita
    Nelakanti, Gnaneshwar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 114 - 131
  • [6] Discrete Legendre Collocation Methods for Fredholm-Hammerstein Integral Equations with Weakly Singular Kernel
    Panigrahi, Bijaya Laxmi
    MATHEMATICS AND COMPUTING (ICMC 2018), 2018, 253 : 315 - 328
  • [7] Legendre spectral projection methods for linear second kind Volterra integral equations with weakly singular kernels
    Chakraborty, Samiran
    Kant, Kapil
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 1377 - 1397
  • [8] Discrete Legendre spectral methods for Hammerstein type weakly singular nonlinear Fredholm integral equations
    Mandal, Moumita
    Kant, Kapil
    Nelakanti, Gnaneshwar
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (11) : 2251 - 2267
  • [9] Convergence analysis of Legendre spectral projection methods for Hammerstein integral equations of mixed type
    Das P.
    Sahani M.M.
    Nelakanti G.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 529 - 555
  • [10] Discrete Legendre spectral projection methods for Fredholm-Hammerstein integral equations
    Das, Payel
    Nelakanti, Gnaneshwar
    Long, Guangqing
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 278 : 293 - 305