Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress

被引:0
|
作者
Yanlong Gao
Zhongxing Zhang
Jiao Cheng
Xulin Xian
Cailong Li
Yanxiu Wang
机构
[1] Gansu Agricultural University,College of Horticulture
来源
Functional & Integrative Genomics | 2023年 / 23卷
关键词
Apple; Wax; gene family; Drought stress;
D O I
暂无
中图分类号
学科分类号
摘要
Plant cuticular wax was a major consideration affecting the growth and quality of plants through protecting the plant from drought and other diseases. According to existing studies, CER1, as the core enzyme encoding the synthesis of alkanes, the main component of wax, can directly affect the response of plants to stress. However, there were few studies on the related functions of CER1 in apple. In this study, three MdCER1 genes in Malus domestica were identified and named MdCER1-1, MdCER1-2, and MdCER1-3 according to their distribution on chromosomes. Then, their physicochemical properties, sequence characteristics, and expression patterns were analyzed. MdCER1-1, with the highest expression level among the three members, was screened for cloning and functional verification. Real-time fluorescence quantitative PCR (qRT-PCR) analysis also showed that drought stress could increase the expression level of MdCER1-1. The experiment of water loss showed that overexpression of MdCER1-1 could effectively prevent water loss in apple calli, and the effect was more significant under drought stress. Meanwhile, MdYPB5, MdCER3, and MdKCS1 were significantly up-regulated, which would be bound up with waxy metabolism. Gas chromatography-mass spectrometer assay of wax fraction makes known that overexpression of MdCER1-1 apparently scaled up capacity of alkanes. The enzyme activities (SOD, POD) of overexpressed apple calli increased significantly, while the contents of proline increased compared with wild-type calli. In conclusion, MdCER1-1 can resist drought stress by reducing water loss in apple calli epidermis, increasing alkanes component content, stimulating the expression of waxy related genes (MdYPB5, MdCER3, and MdKCS1), and increasing antioxidant enzyme activity, which also provided a theoretical basis for exploring the role of waxy in other stresses.
引用
收藏
相关论文
共 50 条
  • [41] Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis)
    Yu, Qian
    Li, Chen
    Zhang, Jiucheng
    Tian, Yueyue
    Wang, Hanyue
    Zhang, Yue
    Zhang, Zhengqun
    Xiang, Qinzeng
    Han, Xiaoyang
    Zhang, Lixia
    PEERJ, 2020, 8
  • [42] Genome-wide analysis and identification of the SMXL gene family in apple (Malus x domestica)
    Li, Rui
    An, Jian-Ping
    You, Chun-Xiang
    Wang, Xiao-Fei
    Hao, Yu-Jin
    TREE GENETICS & GENOMES, 2018, 14 (04)
  • [43] Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple
    Zhu Ling-cheng
    Su Jing
    Jin Yu-ru
    Zhao Hai-yan
    Tian Xiao-cheng
    Zhang Chen
    Ma Feng-wang
    Li Ming-jun
    Ma Bai-quan
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (08) : 2112 - 2125
  • [44] Genome-Wide Analysis of Gene Expression in Response to Drought Stress in Populus simonii
    Jinhui Chen
    Yuepeng Song
    He Zhang
    Deqiang Zhang
    Plant Molecular Biology Reporter, 2013, 31 : 946 - 962
  • [45] Genome-Wide Identification of Common Bean PvLTP Family Genes and Expression Profiling Analysis in Response to Drought Stress
    Dong, Xue
    Zhu, Huijun
    Hao, Xiaopeng
    Wang, Yan
    Ma, Xiaolei
    Zhao, Jiandong
    Chang, Jianwu
    GENES, 2022, 13 (12)
  • [46] Genome-wide identification and expression analysis of the coronatine-insensitive 1 (COI1) gene family in response to biotic and abiotic stresses in Saccharum
    Tingting Sun
    Yintian Meng
    Guangli Cen
    Aoyin Feng
    Weihua Su
    Yanling Chen
    Chuihuai You
    Youxiong Que
    Yachun Su
    BMC Genomics, 23
  • [47] Genome-Wide Identification and Expression Analysis of AMT Gene Family in Apple (Malus domestica Borkh.)
    Huang, Linlin
    Li, Jiazhen
    Zhang, Bin
    Hao, Yanyan
    Ma, Fengwang
    HORTICULTURAE, 2022, 8 (05)
  • [48] Genome-wide identification and expression analysis of glycosyltransferase gene family 1 in Quercus robur L.
    Zhang, Jie
    Lin, Li-Mei
    Cheng, Wen-Wen
    Song, Xin
    Long, Yue-Hong
    Xing, Zhao-Bin
    JOURNAL OF APPLIED GENETICS, 2021, 62 (04) : 559 - 570
  • [49] Genome-wide profile analysis of the Hsp20 family in lettuce and identification of its response to drought stress
    Zhang, Qinqin
    Dai, Bowen
    Fan, Mi
    Yang, Liling
    Li, Chang
    Hou, Guangguang
    Wang, Xiaofang
    Gao, Hongbo
    Li, Jingrui
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [50] Genome-wide analysis of the RING finger gene family in apple
    Li, Yanze
    Wu, Bingjiang
    Yu, Yanli
    Yang, Guodong
    Wu, Changai
    Zheng, Chengchao
    MOLECULAR GENETICS AND GENOMICS, 2011, 286 (01) : 81 - 94