Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress

被引:0
|
作者
Yanlong Gao
Zhongxing Zhang
Jiao Cheng
Xulin Xian
Cailong Li
Yanxiu Wang
机构
[1] Gansu Agricultural University,College of Horticulture
来源
关键词
Apple; Wax; gene family; Drought stress;
D O I
暂无
中图分类号
学科分类号
摘要
Plant cuticular wax was a major consideration affecting the growth and quality of plants through protecting the plant from drought and other diseases. According to existing studies, CER1, as the core enzyme encoding the synthesis of alkanes, the main component of wax, can directly affect the response of plants to stress. However, there were few studies on the related functions of CER1 in apple. In this study, three MdCER1 genes in Malus domestica were identified and named MdCER1-1, MdCER1-2, and MdCER1-3 according to their distribution on chromosomes. Then, their physicochemical properties, sequence characteristics, and expression patterns were analyzed. MdCER1-1, with the highest expression level among the three members, was screened for cloning and functional verification. Real-time fluorescence quantitative PCR (qRT-PCR) analysis also showed that drought stress could increase the expression level of MdCER1-1. The experiment of water loss showed that overexpression of MdCER1-1 could effectively prevent water loss in apple calli, and the effect was more significant under drought stress. Meanwhile, MdYPB5, MdCER3, and MdKCS1 were significantly up-regulated, which would be bound up with waxy metabolism. Gas chromatography-mass spectrometer assay of wax fraction makes known that overexpression of MdCER1-1 apparently scaled up capacity of alkanes. The enzyme activities (SOD, POD) of overexpressed apple calli increased significantly, while the contents of proline increased compared with wild-type calli. In conclusion, MdCER1-1 can resist drought stress by reducing water loss in apple calli epidermis, increasing alkanes component content, stimulating the expression of waxy related genes (MdYPB5, MdCER3, and MdKCS1), and increasing antioxidant enzyme activity, which also provided a theoretical basis for exploring the role of waxy in other stresses.
引用
收藏
相关论文
共 50 条
  • [41] Genome-Wide Identification, Characterization, and Expression Profiling of the ECERIFERUM (CER) Gene Family in Ziziphus jujube
    Li, N.
    Li, X. Z.
    Song, Y. Q.
    Yang, S. T.
    Li, L. L.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2021, 68 (05) : 828 - 837
  • [42] Genome-Wide Identification, Characterization, and Expression Profiling of the ECERIFERUM (CER) Gene Family in Ziziphus jujube
    N. Li
    X. Z. Li
    Y. Q. Song
    S. T. Yang
    L. L. Li
    Russian Journal of Plant Physiology, 2021, 68 : 828 - 837
  • [43] Genome-wide analysis and identification of the SMXL gene family in apple (Malus × domestica)
    Rui Li
    Jian-Ping An
    Chun-Xiang You
    Xiao-Fei Wang
    Yu-Jin Hao
    Tree Genetics & Genomes, 2018, 14
  • [44] Genome-wide identification and analysis of the MADS-box gene family in apple
    Tian, Yi
    Dong, Qinglong
    Ji, Zhirui
    Chi, Fumei
    Cong, Peihua
    Zhou, Zongshan
    GENE, 2015, 555 (02) : 277 - 290
  • [45] Genome-Wide Analysis, Identification, and Transcriptional Profile of the Response to Abiotic Stress of the Purple Acid Phosphatases (PAP) Gene Family in Apple
    Liu, Hong-Chao
    Rao, Lei
    Meng, Jia-Hui
    Zuo, Wen-Teng
    Sun, Ting-Ting
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [46] Genome-Wide Identification of the Expansin Gene Family and Its Potential Association with Drought Stress in Moso Bamboo
    Jin, Kang-Ming
    Zhuo, Ren-Ying
    Xu, Dong
    Wang, Yu-Jun
    Fan, Hui-Jin
    Huang, Bi-Yun
    Qiao, Gui-Rong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (24) : 1 - 21
  • [47] Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley
    Zhang, Xian
    Zhang, Lantian
    Chen, Yuyu
    Wang, Siyi
    Fang, Yunxia
    Zhang, Xiaoqin
    Wu, Yuhuan
    Xue, Dawei
    PLANT GROWTH REGULATION, 2021, 94 (01) : 49 - 60
  • [48] Genome-wide identification of the SOD gene family and expression analysis under drought and salt stress in barley
    Xian Zhang
    Lantian Zhang
    Yuyu Chen
    Siyi Wang
    Yunxia Fang
    Xiaoqin Zhang
    Yuhuan Wu
    Dawei Xue
    Plant Growth Regulation, 2021, 94 : 49 - 60
  • [49] Genome-wide identification and drought stress-induced expression analysis of the NHX gene family in potato
    Ji, Yihong
    Liu, Zhen
    Liu, Chang
    Shao, Ziying
    Zhang, Ning
    Suo, Meiqing
    Liu, Yuhui
    Wang, Lei
    FRONTIERS IN GENETICS, 2024, 15
  • [50] Genome-wide identification and expression analysis of SnRK2 gene family in mungbean (Vigna radiata) in response to drought stress
    Fatima, Annaira
    Khan, Muhammad Jadoon
    Awan, Hassaan Mehboob
    Akhtar, Malik Nadeem
    Bibi, Nazia
    Sughra, Kalsoom
    Khan, Muhammad Ramzan
    Ahmad, Raza
    Ibrahim, Muhammad
    Hussain, Jamshaid
    Sadiq, Irfan
    CROP & PASTURE SCIENCE, 2020, 71 (05): : 469 - 476