Genome-wide identification of the CER1 gene family in apple and response of MdCER1-1 to drought stress

被引:0
|
作者
Yanlong Gao
Zhongxing Zhang
Jiao Cheng
Xulin Xian
Cailong Li
Yanxiu Wang
机构
[1] Gansu Agricultural University,College of Horticulture
来源
关键词
Apple; Wax; gene family; Drought stress;
D O I
暂无
中图分类号
学科分类号
摘要
Plant cuticular wax was a major consideration affecting the growth and quality of plants through protecting the plant from drought and other diseases. According to existing studies, CER1, as the core enzyme encoding the synthesis of alkanes, the main component of wax, can directly affect the response of plants to stress. However, there were few studies on the related functions of CER1 in apple. In this study, three MdCER1 genes in Malus domestica were identified and named MdCER1-1, MdCER1-2, and MdCER1-3 according to their distribution on chromosomes. Then, their physicochemical properties, sequence characteristics, and expression patterns were analyzed. MdCER1-1, with the highest expression level among the three members, was screened for cloning and functional verification. Real-time fluorescence quantitative PCR (qRT-PCR) analysis also showed that drought stress could increase the expression level of MdCER1-1. The experiment of water loss showed that overexpression of MdCER1-1 could effectively prevent water loss in apple calli, and the effect was more significant under drought stress. Meanwhile, MdYPB5, MdCER3, and MdKCS1 were significantly up-regulated, which would be bound up with waxy metabolism. Gas chromatography-mass spectrometer assay of wax fraction makes known that overexpression of MdCER1-1 apparently scaled up capacity of alkanes. The enzyme activities (SOD, POD) of overexpressed apple calli increased significantly, while the contents of proline increased compared with wild-type calli. In conclusion, MdCER1-1 can resist drought stress by reducing water loss in apple calli epidermis, increasing alkanes component content, stimulating the expression of waxy related genes (MdYPB5, MdCER3, and MdKCS1), and increasing antioxidant enzyme activity, which also provided a theoretical basis for exploring the role of waxy in other stresses.
引用
收藏
相关论文
共 50 条
  • [21] Genome-Wide Identification of the NAC Gene Family in Zanthoxylum bungeanum and Their Transcriptional Responses to Drought Stress
    Hu, Haichao
    Ma, Lei
    Chen, Xin
    Fei, Xitong
    He, Beibei
    Luo, Yingli
    Liu, Yonghong
    Wei, Anzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [22] The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress
    Jianqiu Ye
    Hai Yang
    Haitao Shi
    Yunxie Wei
    Weiwei Tie
    Zehong Ding
    Yan Yan
    Ying Luo
    Zhiqiang Xia
    Wenquan Wang
    Ming Peng
    Kaimian Li
    He Zhang
    Wei Hu
    Scientific Reports, 7
  • [23] Genome-Wide Identification of ALDH Gene Family under Salt and Drought Stress in Phaseolus vulgaris
    Eren, Abdil Hakan
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024,
  • [24] The MAPKKK gene family in cassava: Genome-wide identification and expression analysis against drought stress
    Ye, Jianqiu
    Yang, Hai
    Shi, Haitao
    Wei, Yunxie
    Tie, Weiwei
    Ding, Zehong
    Yan, Yan
    Luo, Ying
    Xia, Zhiqiang
    Wang, Wenquan
    Peng, Ming
    Li, Kaimian
    Zhang, He
    Hu, Wei
    SCIENTIFIC REPORTS, 2017, 7
  • [25] Genome-wide identification of the fibrillin gene family in chickpea (Cicer arietinum L.) and its response to drought stress
    Pandey, Anuradha
    Sharma, Punam
    Mishra, Divya
    Dey, Sharmistha
    Malviya, Rinku
    Gayen, Dipak
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 234
  • [26] Genome-wide identification of apple PPI genes and a functional analysis of the response of MxPPI1 to Fe deficiency stress
    Gao, Min
    Sun, Qiran
    Zhai, Longmei
    Zhao, Danrui
    Lv, Jiahong
    Han, Zhenhai
    Wu, Ting
    Zhang, Xinzhong
    Xu, Xuefeng
    Wang, Yi
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2022, 189 : 94 - 103
  • [27] Genome-wide analysis of the soybean DREB gene family: Identification, genomic organization and expression profiles in response to drought stress
    Zhou, Yaxing
    Zhou, Wei
    Liu, Hui
    Liu, Peng
    Li, Zhigang
    PLANT BREEDING, 2020, 139 (06) : 1158 - 1167
  • [28] Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max)
    Zhang, Jinyu
    Zou, Liying
    Wang, Li
    Zhang, Dongchao
    Shen, Ao
    Lei, Yongqi
    Chao, Maoni
    Xu, Xinjuan
    Xue, Zhiwei
    Huang, Zhongwen
    BMC GENOMICS, 2025, 26 (01):
  • [29] Genome-wide identification and functional characterization of CDPK gene family reveal their involvement in response to drought stress in Gossypium barbadense
    Shi, Guangzhen
    Zhu, Xinxia
    PEERJ, 2022, 10
  • [30] Genome-Wide Analysis of the RAV Gene Family in Wheat and Functional Identification of TaRAV1 in Salt Stress
    Luo, Yun-Xin
    Chen, Shou-Kun
    Wang, Peng-Dan
    Peng, De
    Zhang, Xu
    Li, Hai-Feng
    Feng, Cui-Zhu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)