Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli

被引:0
作者
Raza M. [1 ]
Malik S.N. [2 ]
机构
[1] Department of Mathematics, G.C. University Faisalabad, Faisalabad
[2] Department of Mathematics, COMSATS Institute of Information Technology, Lahore, Defense Road
关键词
Hankel determinants; Lemniscate of bernoulli; Starlike functions; Subordination; Toeplitz determinants;
D O I
10.1186/1029-242X-2013-412
中图分类号
学科分类号
摘要
In this paper, the upper bound of the Hankel determinant H3(1) for a subclass of analytic functions associated with right half of the lemniscate of Bernoulli (x2 + y2)2 - 2(x 2 - y2/sup> ) = 0 is investigated. © 2013 Raza and Malik; licensee Springer.
引用
收藏
相关论文
共 50 条
  • [31] THIRD HANKEL DETERMINANT FOR CERTAIN SUBCLASS OF p-VALENT ANALYTIC FUNCTIONS
    Krishna, D. Vamshee
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 375 - 382
  • [32] On Certain Class of Bazilevic Functions Associated with the Lemniscate of Bernoulli
    Seoudy, Tamer M.
    Shammaky, Amnah E.
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [33] BOUND ON HANKEL DETERMINANTS H(2) FOR LEMNISCATE STARLIKE FUNCTIONS
    Kumar, Sushil
    Rai, Pratima
    Cetinkaya, Asena
    [J]. HONAM MATHEMATICAL JOURNAL, 2023, 45 (01): : 92 - 108
  • [34] Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli
    Liu, Likai
    Liu, Jin-Lin
    [J]. AXIOMS, 2021, 10 (03)
  • [35] The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions with Real Coefficients
    Kwon, Oh Sang
    Sim, Young Jae
    [J]. MATHEMATICS, 2019, 7 (08)
  • [36] UPPER BOUND OF SECOND HANKEL DETERMINANT FOR k-BI-SUBORDINATE FUNCTIONS
    Motamednezhad, Ahmad
    Bulut, Serap
    Adegani, Ebrahim Analouei
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (02): : 31 - 42
  • [37] On Sharp Coefficients and Hankel Determinants for a Novel Class of Analytic Functions
    Liu, Dong
    Ahmad, Adeel
    Ikhlas, Huma
    Hussain, Saqib
    Noor, Saima
    Tang, Huo
    [J]. AXIOMS, 2025, 14 (03)
  • [38] SOME GEOMETRIC PROPERTIES OF MULTIVALENT ANALYTIC FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI
    Yang, Lian-Bo
    Yuan, Yuan
    Liu, Jin-Lin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (02): : 790 - 797
  • [39] Third Hankel determinant for univalent starlike functions
    Zaprawa, Pawel
    Obradovic, Milutin
    Tuneski, Nikola
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (02)
  • [40] Third Hankel determinant for univalent starlike functions
    Paweł Zaprawa
    Milutin Obradović
    Nikola Tuneski
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115