Dyson equations for correlators of Wilson loops

被引:0
作者
Diego Correa
Pablo Pisani
Alan Rios Fukelman
Konstantin Zarembo
机构
[1] Universidad Nacional de La Plata,Instituto de Física La Plata, CONICET
[2] Universitat de Barcelona,Institut de Ciències del Cosmos
[3] Nordita,Department of Physics and Astronomy
[4] Stockholm University and KTH Royal Institute of Technology,Hamilton Mathematics Institute
[5] Uppsala University,undefined
[6] Trinity College Dublin,undefined
[7] ITEP,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
AdS-CFT Correspondence; Supersymmetric Gauge Theory; Wilson, ’t Hooft and Polyakov loops; Matrix Models;
D O I
暂无
中图分类号
学科分类号
摘要
By considering a Gaussian truncation of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills, we derive a set of Dyson equations that account for the ladder diagram contribution to connected correlators of circular Wilson loops. We consider different numbers of loops, with different relative orientations. We show that the Dyson equations admit a spectral representation in terms of eigenfunctions of a Schrödinger problem, whose classical limit describes the strong coupling limit of the ladder resummation. We also verify that in supersymmetric cases the exact solution to the Dyson equations reproduces known matrix model results.
引用
收藏
相关论文
共 73 条
[1]  
Erickson JK(2000)Wilson loops in N = 4 supersymmetric Yang-Mills theory Nucl. Phys. B 582 155-undefined
[2]  
Semenoff GW(2001)An Exact prediction of N = 4 SUSYM theory for string theory J. Math. Phys. 42 2896-undefined
[3]  
Zarembo K(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
[4]  
Drukker N(2017)Localization and AdS/CFT Correspondence J. Phys. A 50 443011-undefined
[5]  
Gross DJ(2012)The cusp anomalous dimension at three loops and beyond JHEP 05 098-undefined
[6]  
Pestun V(2016)Quark-anti-quark potential in JHEP 12 122-undefined
[7]  
Zarembo K(2017) = 4 SYM JHEP 12 055-undefined
[8]  
Correa D(2018)Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop JHEP 10 060-undefined
[9]  
Henn J(2001)Quantum spectral curve and structure constants in JHEP 03 042-undefined
[10]  
Maldacena J(2018) = 4 SYM: cusps in the ladder limit JHEP 05 168-undefined