Milling force prediction model based on transfer learning and neural network

被引:0
作者
Juncheng Wang
Bin Zou
Mingfang Liu
Yishang Li
Hongjian Ding
Kai Xue
机构
[1] Shandong University,Centre for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering
[2] Shandong University,Key Laboratory of High Efficiency and Clean Mechanical Manufacture
[3] Ministry of Education,National Demonstration Center for Experimental Mechanical Engineering Education
[4] Shandong University,undefined
[5] Shanghai Aerospace Equipments Manufacture Co.,undefined
[6] Ltd,undefined
来源
Journal of Intelligent Manufacturing | 2021年 / 32卷
关键词
Cutting force; Neural network; Transfer learning; Prediction;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, the growing popularity of artificial neural networks has urged more and more researchers to try introduce these methods to the machining field, with some of them actually producing good results. The acquisition of cutting data often means higher cost and time, limiting the application of neural network in the machining sector, to a certain extent. In this paper, for the task of cutting force prediction, a “transfer network” was established, based on data obtained by simulation, combined with the theory and method in the field of transfer learning. Compared to “ordinary network”, that is, traditional back-propagation neural network based on experimental samples alone, transfer network exhibits obvious performance advantages. On one hand, this means that, using the same experimental samples, the prediction error of transfer network will be controlled; while on the other hand, when the same prediction error is achieved, the number of experimental samples required by the transfer network will be less.
引用
收藏
页码:947 / 956
页数:9
相关论文
共 50 条
  • [31] Rolling Force Prediction System of Cold Rolling Process Based on BP Neural Network
    Teng, Wei
    Wang, Guangming
    MATERIAL DESIGN, PROCESSING AND APPLICATIONS, PARTS 1-4, 2013, 690-693 : 2361 - +
  • [32] Transfer learning of convolutional neural network model for thermal estimation of multichip modules
    Wang, Zhi-Qiao
    Hua, Yue
    Xie, Hao-Ran
    Zhou, Zhi-Fu
    Li, Yu-Bai
    Wu, Wei-Tao
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 59
  • [33] Neural Network-Based Limiter with Transfer Learning
    Abgrall, Remi
    Han Veiga, Maria
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020,
  • [34] Neural Network-Based Limiter with Transfer Learning
    Abgrall, Remi
    Han Veiga, Maria
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (02) : 532 - 572
  • [35] Neural Network-Based Limiter with Transfer Learning
    Rémi Abgrall
    Maria Han Veiga
    Communications on Applied Mathematics and Computation, 2023, 5 (2) : 532 - 572
  • [36] Wear status prediction of micro milling tools by transfer learning and ViT model
    Sun, Qiang
    Yu, Zhanjiang
    Li, Yiquan
    Yang, Shen
    Xu, Jinkai
    Yu, Huadong
    2021 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2021, : 183 - 187
  • [37] Network Traffic Prediction Based on LSTM and Transfer Learning
    Wan, Xianbin
    Liu, Hui
    Xu, Hao
    Zhang, Xinchang
    IEEE ACCESS, 2022, 10 : 86181 - 86190
  • [38] An Improved Hybrid Transfer Learning-Based Deep Learning Model for PM2.5 Concentration Prediction
    Ni, Jianjun
    Chen, Yan
    Gu, Yu
    Fang, Xiaolong
    Shi, Pengfei
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [39] Virtual milling force monitoring method based on in-process milling force prediction model to eliminate predetermination of cutting coefficients
    Kaneko, Kazuki
    Nishida, Isamu
    Sato, Ryuta
    Shirase, Keiichi
    8TH CIRP CONFERENCE ON HIGH PERFORMANCE CUTTING (HPC 2018), 2018, 77 : 22 - 25
  • [40] Neural-Network Prediction of the Surface Roughness in Milling
    Erygin E.V.
    Duyun T.A.
    Korop A.D.
    Russian Engineering Research, 2023, 43 (01) : 84 - 87