Noncommutative Topological Entropy of Endomorphisms of Cuntz Algebras

被引:0
作者
Adam Skalski
Joachim Zacharias
机构
[1] Lancaster University,Department of Mathematics and Statistics
[2] University of Nottingham,School of Mathematical Sciences
[3] University of Łódź,Department of Mathematics
来源
Letters in Mathematical Physics | 2008年 / 86卷
关键词
Primary 46L55; Secondary 37B40; noncommutative topological entropy; Cuntz algebra; polynomial endomorphisms;
D O I
暂无
中图分类号
学科分类号
摘要
Noncommutative topological entropy estimates are obtained for polynomial gauge invariant endomorphisms of Cuntz algebras, generalising known results for the canonical shift endomorphisms. Exact values for the entropy are computed for a class of permutative endomorphisms related to branching function systems introduced and studied by Bratteli, Jorgensen and Kawamura.
引用
收藏
页码:115 / 134
页数:19
相关论文
共 13 条
  • [1] Boca F.(2000)Topological entropy for the canonical endomorphisms of Cuntz–Krieger algebras Bull. Lond.n Math. Soc. 32 345-352
  • [2] Goldstein P.(1999)Topological entropy in exact Math. Ann. 314 347-367
  • [3] Brown N.(1999)*-algebras Pac. J. Math. 190 235-245
  • [4] Choda M.(1977)Entropy of Cuntz’s canonical endomorphism Commun. Math. Phys. 57 173-185
  • [5] Cuntz J.(2001)Simple Proc. Edinb. Math. Soc. 44 425-444
  • [6] Dykema K.(2005)*-algebras generated by isometries Lett. Math. Phys. 71 149-158
  • [7] Shlyakhtenko D.(2002)Exactness of Cuntz–Pimsner J. Funct. Anal. 188 156-215
  • [8] Kawamura K.(2008)*-algebras Houst. J. Math. 34 269-282
  • [9] Kerr D.(1995)Polynomial endomorphisms of the Cuntz algebras arising from permutations. I. General theory Commun. Math. Phys. 170 249-281
  • [10] Pinzari C.(undefined)Noncommutative pressure and the variational principle in Cuntz–Krieger-type undefined undefined undefined-undefined