Modified centroid triplet loss for person re-identification

被引:0
作者
Alaa Alnissany
Yazan Dayoub
机构
[1] Higher Institute for Applied Sciences and Technology,Department of Electronic and Mechanical Systems
[2] HSE University,Department of Computer Science
来源
Journal of Big Data | / 10卷
关键词
Person ReID; Triplet loss; Center loss; Inter class distance; Centroid triplet loss; DukeMTMC-ReID; Market-1501;
D O I
暂无
中图分类号
学科分类号
摘要
Person Re-identification (ReID) is the process of matching target individuals to their images within different images or videos captured from a variety of angles or cameras. This is a critical task for surveillance applications, in particular, these applications that operate in large environments such as malls and airports. Recent studies use data-driven approaches to tackle this problem. This work continues on this path by presenting a modification of a previously defined loss, the centroid triplet loss ( CTL). The proposed loss, modified centroid triplet loss (MCTL), emphasizes more on the interclass distance. It is divided into two parts, one penalizes for interclass distance and second penalizes for intraclass distance. Mean Average Precision (mAP) was adopted to validate our approach, two datasets are also used for validation; Market-1501 and DukeMTMC. The results were calculated for first rank of identification and mAP. For dataset Market-1501 dataset, the results were 98.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.4\%$$\end{document} rank1, 98.63%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$98.63\%$$\end{document} mAP, and 96.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$96.8\%$$\end{document} rank1, 97.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$97.3\%$$\end{document} mAP on DukeMTMC dataset, the results outweighed those of existing studies in the domain.
引用
收藏
相关论文
共 40 条
  • [1] An Le(2017)Integrating appearance features and soft biometrics for person re-identification Multimed Tools Appl 76 12117-12131
  • [2] Chen Xiaojing(2019)Learning resolution-invariant deep representations for person re-identification Proc AAAI Conf Artif Int 33 8215-8222
  • [3] Liu Shuang(2017)A person re-identification algorithm based on pyramid color topology feature Multimed Tools Appl 76 26633-26646
  • [4] Lei Yinjie(2019)A strong baseline and batch normalization neck for deep person re-identification IEEE Trans Multimed 22 2597-2609
  • [5] Yang Songfan(2022)Deep learning-based person re-identification methods: a survey and outlook of recent works Image Vis Comput 119 8933-8940
  • [6] Yun-Chun C(2021)Person re-identification with a locally aware transformer arXiv Preprint 33 3-19
  • [7] Yu-Jhe L(2019)Spatial-temporal person re-identification Proc AAAI Conf Artif Intell 34 undefined-undefined
  • [8] Xiaofei D(2013)Intelligent multi-camera video surveillance: a review Pattern Recogn Lett undefined undefined-undefined
  • [9] Yu-Chiang FW(2021)On the unreasonable effectiveness of centroids in image retrieval arXiv undefined undefined-undefined
  • [10] Hai-Miao Hu(undefined)undefined undefined undefined undefined-undefined