The TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation of quantum field theory as random geometry

被引:0
|
作者
John Cardy
机构
[1] University of California,Department of Physics
[2] University of Oxford,All Souls College
关键词
Boundary Quantum Field Theory; Conformal Field Theory; Field Theories in Lower Dimensions; Integrable Field Theories;
D O I
10.1007/JHEP10(2018)186
中图分类号
学科分类号
摘要
We revisit the results of Zamolodchikov and others on the deformation of two-dimensional quantum field theory by the determinant det T of the stress tensor, commonly referred to as TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}. Infinitesimally this is equivalent to a random coordinate transformation, with a local action which is, however, a total derivative and therefore gives a contribution only from boundaries or nontrivial topology. We discuss in detail the examples of a torus, a finite cylinder, a disk and a more general simply connected domain. In all cases the partition function evolves according to a linear diffusion-type equation, and the deformation may be viewed as a kind of random walk in moduli space. We also discuss possible generalizations to higher dimensions.
引用
收藏
相关论文
共 50 条