Harry Kesten’s work in probability theory

被引:0
|
作者
Geoffrey R. Grimmett
机构
[1] Cambridge University,Statistical Laboratory, Centre for Mathematical Sciences
[2] The University of Melbourne,School of Mathematics and Statistics
[3] Bristol University,Heilbronn Institute for Mathematical Research
来源
Probability Theory and Related Fields | 2021年 / 181卷
关键词
Probability; Random walk; Branching process; Random matrix; Diffusion limited aggregation; Percolation; 60-03; 60G50; 60J80; 60B20; 60K35; 82B20;
D O I
暂无
中图分类号
学科分类号
摘要
We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, percolation, and related topics.
引用
收藏
页码:17 / 55
页数:38
相关论文
共 50 条
  • [21] Chance, determinism and the classical theory of probability
    Vasudevan, Anubav
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2018, 67 : 32 - 43
  • [22] COUPLING METHODS IN PROBABILITY-THEORY
    THORISSON, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 1995, 22 (02) : 159 - 182
  • [23] PROBABILITY-THEORY AND POLYMER PHYSICS
    JANSONS, KM
    ROGERS, LCG
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 139 - 165
  • [24] A new approach to probability theory and thermodynamics
    Maslov, V. P.
    MATHEMATICAL NOTES, 2011, 90 (1-2) : 125 - 135
  • [25] Unification of probability theory on time scales
    Ufuktepe, Unal
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [26] Unification of probability theory on time scales
    Ünal Ufuktepe
    Advances in Difference Equations, 2012
  • [27] ON THE LUKASIEWICZ PROBABILITY THEORY ON IF-SETS
    Riecan, Beloslav
    Petrovicova, Jozefina
    REAL FUNCTION 09: MEASURES, INTEGRATION, HARMONIC ANALYSIS, TOPOLOGY AND MATHEMATICAL ECONOMICS, 2010, 46 : 125 - +
  • [28] Probability Axioms and Set Theory Paradoxes
    Herman, Ari
    Caughman, John
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 10
  • [29] Some Remarks on Axioms of Probability Theory
    Vallander, S. S.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2013, 46 (03) : 126 - 128
  • [30] Quantum probability from decision theory?
    Barnum, H
    Caves, CM
    Finkelstein, J
    Fuchs, CA
    Schack, R
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1997): : 1175 - 1182