A comparative study on dielectric behaviours of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures with different interlayer thicknesses using impedance spectroscopy methods

被引:0
|
作者
Havva Elif Lapa
Ali Kökce
Ahmet Faruk Özdemir
İbrahim Uslu
Şemsettin Altindal
机构
[1] Süleyman Demirel University,Department of Physics, Faculty of Sciences and Arts
[2] Gazi University,Department of Chemistry Education, Faculty of Education
[3] Gazi University,Department of Physics, Faculty of Sciences
来源
Bulletin of Materials Science | 2018年 / 41卷
关键词
(Zn-doped PVA) interlayer; impedance spectroscopy method; frequency- and interlayer-thickness dependences; dielectric properties; electric modulus; ac conductivity;
D O I
暂无
中图分类号
学科分类号
摘要
Three different thicknesses (50, 150 and 500 nm) Zn-doped polyvinyl alcohol (PVA) was deposited on n-4H-SiC wafer as interlayer by electrospinning method and so, Au/(Zn-doped PVA)/n-4H-SiC metal–polymer–semiconductor structures were fabricated. The thickness effect of Zn-doped PVA on the dielectric constant (ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{\prime }$$\end{document}), dielectric loss (ε′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{{\prime }{\prime }}$$\end{document}), loss-tangent (tan δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}), real and imaginary parts of electric modulus (M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\prime }$$\end{document} and M′′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{{\prime }{\prime }})$$\end{document} and ac electrical conductivity (σac)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma _{\mathrm{ac}})$$\end{document} of them were analysed and compared using experimental capacitance (C) and conductance (G/ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G/\omega $$\end{document}) data in the frequency range of 1–500 kHz at room temperature. According to these results, the values of ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{\prime }$$\end{document} and ε′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{{\prime }{\prime }}$$\end{document} decrease with increasing frequency almost exponentially, σac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathrm{ac}}$$\end{document} increases especially, at high frequencies. The M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\prime }$$\end{document} and M′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{{\prime }{\prime }}$$\end{document} values were obtained from the ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{\prime }$$\end{document} and ε′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{{\prime }{\prime }}$$\end{document} data and the M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\prime }$$\end{document} and M′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{{\prime }{\prime }}$$\end{document}vs. f plots were drawn for these structures. While the values of ε′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{\prime }$$\end{document}, ε′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon ^{{\prime }{\prime }}$$\end{document} and tan δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} increase with increasing interlayer thickness, the values of M′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{\prime }$$\end{document} and M′′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{{\prime }{\prime }}$$\end{document} decrease with increasing interlayer thickness. The double logarithmic σac\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathrm{ac}}$$\end{document}vs. f plots for each structure have two distinct linear regimes with different slopes, which correspond to low and high frequencies, respectively, and it is prominent that there exist two different conduction mechanisms. Obtained results were found as a strong function of frequency and interlayer thickness.
引用
收藏
相关论文
共 5 条
  • [1] A comparative study on dielectric behaviours of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures with different interlayer thicknesses using impedance spectroscopy methods
    Lapa, Havva Elif
    Kokce, Ali
    Ozdemir, Ahmet Faruk
    Uslu, Ibrahim
    Altindal, Semsettin
    BULLETIN OF MATERIALS SCIENCE, 2018, 41 (03)
  • [2] Investigation of Dielectric Properties, Electric Modulus and Conductivity of the Au/Zn-Doped PVA/n-4H-SiC (MPS) Structure Using Impedance Spectroscopy Method
    Lapa, Havva Elif
    Kokce, Ali
    Ozdemir, Ahmet Faruk
    Altindal, Semsettin
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2020, 234 (03): : 505 - 516
  • [3] Interfacial layer thickness dependent electrical characteristics of Au/(Zn-doped PVA)/n-4H-SiC (MPS) structures at room
    Lapa, Havva Elif
    Kokce, Ali
    Al-Dharob, Mohammed
    Orak, Ikram
    Ozdemir, Ahmet Faruk
    Altindal, Semsettin
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2017, 80 (01)
  • [4] The origin of anomalous peak and negative capacitance on dielectric behavior in the accumulation region in Au/(0.07 Zn-doped polyvinyl alcohol)/n-4H-SiC metal-polymer-semiconductor structures/diodes studied by temperature-dependent impedance measurements
    Al-Dharob, Mohammad Hussein
    Kokce, Ali
    Aldemir, Durmus Ali
    Ozdemir, Ahmet Faruk
    Altindal, Semsettin
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 144
  • [5] The investigation of current-conduction mechanisms (CCMs) in Au/(0.07Zn-PVA)/n-4H-SiC (MPS) Schottky diodes (SDs) by using (I-V-T) measurements
    Al-Dharob, M. Hussein
    Lapa, H. Elif
    Kokce, A.
    Ozdemir, A. Faruk
    Aldemir, D. Ali
    Altindal, S.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 85 : 98 - 105