Topological Properties of Thinning in 2-D Pseudomanifolds

被引:0
|
作者
Nicolas Passat
Michel Couprie
Loïc Mazo
Gilles Bertrand
机构
[1] Université de Strasbourg,LSIIT, UMR CNRS 7005
[2] Université Paris-Est,Laboratoire d’Informatique Gaspard
来源
Journal of Mathematical Imaging and Vision | 2010年 / 37卷
关键词
Topology preservation; Simple points; Simple sets; Cubical complexes; Collapse; Confluence; Pseudomanifolds;
D O I
暂无
中图分类号
学科分类号
摘要
Preserving topological properties of objects during thinning procedures is an important issue in the field of image analysis. In the case of 2-D digital images (i.e. images defined on ℤ2) such procedures are usually based on the notion of simple point. In contrast to the situation in ℤn, n≥3, it was proved in the 80s that the exclusive use of simple points in ℤ2 was indeed sufficient to develop thinning procedures providing an output that is minimal with respect to the topological characteristics of the object. Based on the recently introduced notion of minimal simple set (generalising the notion of simple point), we establish new properties related to topology-preserving thinning in 2-D spaces which extend, in particular, this classical result to cubical complexes in 2-D pseudomanifolds.
引用
收藏
页码:27 / 39
页数:12
相关论文
共 50 条
  • [1] Topological Properties of Thinning in 2-D Pseudomanifolds
    Passat, Nicolas
    Couprie, Michel
    Mazo, Loic
    Bertrand, Gilles
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2010, 37 (01) : 27 - 39
  • [2] Topology-Preserving Thinning in 2-D Pseudomanifolds
    Passat, Nicolas
    Couprie, Michel
    Mazo, Loic
    Bertrand, Gilles
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, PROCEEDINGS, 2009, 5810 : 217 - +
  • [3] ON TOPOLOGY PRESERVATION IN 2-D AND 3-D THINNING
    KONG, TY
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1995, 9 (05) : 813 - 844
  • [4] Perceiving topological structure of 2-D patterns
    Hecht, H
    Bader, H
    ACTA PSYCHOLOGICA, 1998, 99 (03) : 255 - 292
  • [5] UNCONSTRAINED SUPERSPACE FORMALISM OF TOPOLOGICAL 2-D GRAVITY
    TAHIRI, M
    MODERN PHYSICS LETTERS A, 1995, 10 (26) : 1949 - 1958
  • [6] Enhanced Topological Graphs for 2-D Sensor Networks
    El Salti, Tarek
    Nasser, Nidal
    Taleb, Tarik
    Al-Yatama, Anwar
    2010 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2010,
  • [7] THE FLAT OSP(1,2/2) SUPERCONNECTION CONDITION - 2-D SUPERGRAVITY AND TOPOLOGICAL 2-D GRAVITY
    LAGRAA, M
    MODERN PHYSICS LETTERS A, 1994, 9 (26) : 2399 - 2410
  • [8] THE TOPOLOGICAL-STRUCTURE OF 3-PSEUDOMANIFOLDS
    ALTSHULER, A
    BREHM, U
    ISRAEL JOURNAL OF MATHEMATICS, 1981, 39 (1-2) : 63 - 73
  • [9] 2-D or not 2-D?
    Rao, SS
    FORBES, 1999, 164 (12): : 234 - 234
  • [10] Scaling in 2-D distribution of topological defects in a liquid crystal
    Massalska-Arodz, M
    ACTA PHYSICA POLONICA A, 1998, 94 (01) : 41 - 47