Patterns of inheritance for cotyledon resistance against Sclerotinia sclerotiorum in Brassica napus

被引:0
|
作者
Muhammad Azam Khan
Wallace Cowling
Surinder Singh Banga
Ming Pei You
Vikrant Tyagi
Baudh Bharti
Martin J. Barbetti
机构
[1] UWA School of Agriculture and Environment and the UWA Institute of Agriculture,Department of Plant Breeding and Genetics
[2] Punjab Agricultural University,Punjab Bio
[3] University of Agriculture,Energy Institute
来源
Euphytica | 2020年 / 216卷
关键词
Additive-dominance model;
D O I
暂无
中图分类号
学科分类号
摘要
Sclerotinia rot, caused by the fungal pathogen Sclerotinia sclerotiorum, is a devastating disease on oilseed rape and mustard worldwide. While the focus to effectively control yield losses from Sclerotinia has been on locating stem resistance, resistance to leaf and to early (cotyledon) stage resistance to this pathogen are also important, both not only limiting additional plant damage, but also inoculum build up and spread onto stems. Three Brassica napus breeding populations developed in India, C2 (NC-8 × RQ-001-NCA-8 NC2-7), C5 (cv. Charlton × RQ-001-NCA-8 NC2-7) and C6 (cv. Charlton × NC4-5), were screened for cotyledon resistance (based on lesion diameter) under controlled environmental conditions to investigate the inheritance of disease resistance. Each population consisted of parents (P1 and P2), F1, F2, BC1P1 and BC2P2, except for population C5 which lacked BC1P1. Moderate broad sense heritability of 0.42, 0.31 and 0.49 for cotyledon resistance was found in populations C2, C5 and C6, respectively, and there was mostly non-additive genetic control of resistance. Analyses of generation means and variances indicated that the additive-dominance model was adequate to explain genetics of cotyledon resistance in population C2. There was heterosis for susceptibility (i.e., larger lesion diameter). The dominance × dominance digenic epistasis explained genetic control in population C6, with heterosis towards resistance (i.e., smaller lesion diameter). This information is critical for breeding for resistance to this important pathogen in Australia, India and elsewhere.
引用
收藏
相关论文
共 50 条
  • [21] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B-oleracea
    Ding, Yijuan
    Mei, Jiaqin
    Li, Qinfei
    Liu, Yao
    Wan, Huafang
    Wang, Lei
    Becker, Heiko C.
    Qian, Wei
    GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (05) : 1615 - 1619
  • [22] Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus
    Li, Jiqiang
    Zhao, Zunkang
    Hayward, Alice
    Cheng, Hongyu
    Fu, Donghui
    EUPHYTICA, 2015, 205 (02) : 483 - 489
  • [23] Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum
    Fan, Y.
    Du, K.
    Gao, Y.
    Kong, Y.
    Chu, C.
    Sokolov, V.
    Wang, Y.
    RUSSIAN JOURNAL OF GENETICS, 2013, 49 (04) : 380 - 387
  • [24] Screening of Brassica napus and Phaseolus vulgaris for physiological resistance to Sclerotinia sclerotiorum.
    不详
    CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 2005, 27 (01): : 166 - 166
  • [25] Host resistance: The key to effectively manage Sclerotinia stem rot (Sclerotinia sclerotiorum) in canola (Brassica napus)
    Khan, M. A.
    Cowling, W. A.
    You, M.
    Batley, J.
    Banga, S. S.
    Barbetti, M.
    PHYTOPATHOLOGY, 2018, 108 (10) : 26 - 26
  • [26] Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus
    Dayong Wei
    Jiaqin Mei
    Ying Fu
    Joseph O. Disi
    Jiana Li
    Wei Qian
    Molecular Breeding, 2014, 34 : 1797 - 1804
  • [27] Graphene Oxide Affects Growth and Resistance to Sclerotinia sclerotiorum in Brassica napus L.
    Liu, Yufeng
    Yuan, Chengfei
    Cheng, Yong
    Yao, Guoxin
    Xie, Lingli
    Xu, Benbo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (12) : 8345 - 8351
  • [28] A GDSL motif-containing lipase modulates Sclerotinia sclerotiorum resistance in Brassica napus
    Ding, Li-Na
    Hu, Ying-Hui
    Li, Teng
    Li, Ming
    Li, Yue-Tao
    Wu, Yuan-Zhen
    Cao, Jun
    Tan, Xiao-Li
    PLANT PHYSIOLOGY, 2024, 196 (04) : 2973 - 2988
  • [29] Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus
    Wei, Dayong
    Mei, Jiaqin
    Fu, Ying
    Disi, Joseph O.
    Li, Jiana
    Qian, Wei
    MOLECULAR BREEDING, 2014, 34 (04) : 1797 - 1804
  • [30] Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus
    Seifbarghi, Shirin
    Borhan, M. Hossein
    Wei, Yangdou
    Coutu, Cathy
    Robinson, Stephen J.
    Hegedus, Dwayne D.
    BMC GENOMICS, 2017, 18