Deterministic Behaviour of Short Time Series

被引:0
作者
Alessandra Celletti
Claude Froeschlé
Igor V. Tetko
Alessandro E.P. Villa
机构
[1] Universitá di L'Aquila,Dipt. di Matematica Pura e Applicata
[2] Observatoire de Nice,Department of Biomedical Applications, IBPC
[3] Academy of Sciences of Ukraine,Laboratoire de Neuro–heuristique, Institut de Physiologie
[4] Université de Lausanne,undefined
关键词
Chaos; Deterministic behaviour; Lyapunov exponents; Computational methods; Nonlinear dynamics.;
D O I
10.1023/A:1004668310653
中图分类号
学科分类号
摘要
We present a new method for detecting a low‐dimensional deterministic character of very short discrete time series. The algorithm depends on two parameters, that can be selected according to a simple criterion. Experiments show that the method is sensitive to noise levels as low as 2%. In addition, our technique allows us to estimate the value of the largest Lyapunov exponent.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [41] Investigating chaos in river stage and discharge time series
    Khatibi, Rahman
    Sivakumar, Belie
    Ghorbani, Mohammad Ali
    Kisi, Ozgur
    Kocak, Kasim
    Zadeh, Davod Farsadi
    JOURNAL OF HYDROLOGY, 2012, 414 : 108 - 117
  • [42] Chaotic characteristics of the Southern Oscillation Index time series
    Kawamura, A
    McKerchar, AI
    Spigel, RH
    Jinno, K
    JOURNAL OF HYDROLOGY, 1998, 204 (1-4) : 168 - 181
  • [43] Non-linear dynamical classification of short time series of the Rossler system in high noise regimes
    Lainscsek, Claudia
    Weyhenmeyer, Jonathan
    Hernandez, Manuel E.
    Poizner, Howard
    Sejnowski, Terrence J.
    FRONTIERS IN NEUROLOGY, 2013, 4
  • [44] Effect of missing data on short time series and their application in the characterization of surface temperature by detrended fluctuation analysis
    Lopez, J. L.
    Hernandez, S.
    Urrutia, A.
    Lopez-Cortes, X. A.
    Araya, H.
    Morales-Salinas, L.
    COMPUTERS & GEOSCIENCES, 2021, 153
  • [45] On nonlinear, stochastic dynamics in economic and financial time series
    Schittenkopf, C
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2000, 4 (03) : 101 - 121
  • [46] A new method for short-term traffic flow forecasting based on chaotic time series analysis
    Jiang, HF
    Wei, XY
    Zhang, Y
    ICEMI 2005: CONFERENCE PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL 3, 2005, : 65 - 68
  • [47] Dynamic and geometric analysis of short time series: a new comparative approach to cell-based biosensors
    Billings, L
    Schwartz, IB
    Pancrazio, JJ
    Schnur, JM
    PHYSICS LETTERS A, 2001, 286 (2-3) : 217 - 224
  • [48] Analysis of Time Series Generated By Long Short-Term Memory Trained with Adversarial Imitation Learning
    Yamazaki, Seiya
    Iizuka, Hiroyuki
    Yamamoto, Masahito
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 225 - 229
  • [49] Mitigating long transient time in deterministic systems by resetting
    Ray, Arnob
    Pal, Arnab
    Ghosh, Dibakar
    Dana, Syamal K.
    Hens, Chittaranjan
    CHAOS, 2021, 31 (01)
  • [50] A New Short-term Power Load Forecasting Model Based on Chaotic Time Series and SVM
    Niu, Dongxiao
    Wang, Yongli
    Duan, Chunming
    Xing, Mian
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2009, 15 (13) : 2726 - 2745