Deterministic Behaviour of Short Time Series

被引:0
作者
Alessandra Celletti
Claude Froeschlé
Igor V. Tetko
Alessandro E.P. Villa
机构
[1] Universitá di L'Aquila,Dipt. di Matematica Pura e Applicata
[2] Observatoire de Nice,Department of Biomedical Applications, IBPC
[3] Academy of Sciences of Ukraine,Laboratoire de Neuro–heuristique, Institut de Physiologie
[4] Université de Lausanne,undefined
关键词
Chaos; Deterministic behaviour; Lyapunov exponents; Computational methods; Nonlinear dynamics.;
D O I
10.1023/A:1004668310653
中图分类号
学科分类号
摘要
We present a new method for detecting a low‐dimensional deterministic character of very short discrete time series. The algorithm depends on two parameters, that can be selected according to a simple criterion. Experiments show that the method is sensitive to noise levels as low as 2%. In addition, our technique allows us to estimate the value of the largest Lyapunov exponent.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [31] Reconstructions of Parameters of Radiophysical Chaotic Generator with Delayed Feedback from Short Time Series
    Ishbulatov, Yu. M.
    Karavaev, A. S.
    Kiselev, A. R.
    Semyachkina-Glushkovskaya, O. V.
    Postnov, D. E.
    Bezruchko, B. P.
    SARATOV FALL MEETING 2017: LASER PHYSICS AND PHOTONICS XVIII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA IV, 2018, 10717
  • [32] Applying time delay convergent cross mapping to Bitcoin time series
    Isufaj, Albi
    Martins, Caio De Castro
    Cavazza, Marc
    Prendinger, Helmut
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [33] Nonlinear time-series analysis revisited
    Bradley, Elizabeth
    Kantz, Holger
    CHAOS, 2015, 25 (09)
  • [34] A Jacobian approach for calculating the Lyapunov exponents of short time series using support vector regression
    Kamalanand Krishnamurthy
    Sujatha C. Manoharan
    Ramakrishnan Swaminathan
    Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 3329 - 3335
  • [35] Divergence in perpendicular recurrence plot; quantification of dynamical divergence from short chaotic time series
    Choi, JM
    Bae, BH
    Kim, SY
    PHYSICS LETTERS A, 1999, 263 (4-6) : 299 - 306
  • [36] A new characterization of chaos from a time series
    Alves, P. R. L.
    Duarte, L. G. S.
    da Mota, L. A. C. P.
    CHAOS SOLITONS & FRACTALS, 2017, 104 : 323 - 326
  • [37] Taming the Chaos in Neural Network Time Series Predictions
    Raubitzek, Sebastian
    Neubauer, Thomas
    ENTROPY, 2021, 23 (11)
  • [38] AN OPTIMAL METRIC FOR PREDICTING CHAOTIC TIME-SERIES
    TANAKA, N
    OKAMOTO, H
    NAITO, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (01): : 388 - 394
  • [39] Dynamic plus connectionist approach to time series prediction
    Kulkarni, DR
    Parikh, JC
    APPLICATIONS AND SCIENCE OF ARTIFICIAL NEURAL NETWORKS III, 1997, 3077 : 35 - 45
  • [40] Chaotic time series analysis in economics: Balance and perspectives
    Faggini, Marisa
    CHAOS, 2014, 24 (04)