Deterministic Behaviour of Short Time Series

被引:0
作者
Alessandra Celletti
Claude Froeschlé
Igor V. Tetko
Alessandro E.P. Villa
机构
[1] Universitá di L'Aquila,Dipt. di Matematica Pura e Applicata
[2] Observatoire de Nice,Department of Biomedical Applications, IBPC
[3] Academy of Sciences of Ukraine,Laboratoire de Neuro–heuristique, Institut de Physiologie
[4] Université de Lausanne,undefined
关键词
Chaos; Deterministic behaviour; Lyapunov exponents; Computational methods; Nonlinear dynamics.;
D O I
10.1023/A:1004668310653
中图分类号
学科分类号
摘要
We present a new method for detecting a low‐dimensional deterministic character of very short discrete time series. The algorithm depends on two parameters, that can be selected according to a simple criterion. Experiments show that the method is sensitive to noise levels as low as 2%. In addition, our technique allows us to estimate the value of the largest Lyapunov exponent.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [21] Reconstructions of model equations of time-delay system from short experimental time series
    Karavaev, Anatoly S.
    Ishbulatov, Yurii M.
    Borovkova, Ekaterina, I
    Kulminskiy, Danil D.
    Khorev, Vladimir
    Kiselev, Anton
    Ponomarenko, Vladimir, I
    Gridnev, Vladimir, I
    Prokhorov, Mikhail D.
    Bezruchko, Boris P.
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (02)
  • [22] Co-existence of stochastic and chaotic behaviour in the copper price time series
    Mastroeni, Loretta
    Vellucci, Pierluigi
    Naldi, Maurizio
    RESOURCES POLICY, 2018, 58 : 295 - 302
  • [23] Novel techniques for improving NNetEn entropy calculation for short and noisy time series
    Heidari, Hanif
    Velichko, Andrei
    Murugappan, Murugappan
    Chowdhury, Muhammad E. H.
    NONLINEAR DYNAMICS, 2023, 111 (10) : 9305 - 9326
  • [24] Detectability of deterministic non-linear processes in Earth rotation time-series - II. Dynamics
    Frede, V
    Mazzega, P
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 137 (02) : 565 - 579
  • [25] Effect of parameter calculation in direct estimation of the Lyapunov exponent in short time series
    Jiménez, AML
    De Rey, CCMV
    Torres, ARG
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2002, 7 (01) : 41 - 52
  • [26] Methods for short time series analysis of cell-based biosensor data
    Schwartz, IB
    Billings, L
    Pancrazio, JJ
    Schnur, JM
    BIOSENSORS & BIOELECTRONICS, 2001, 16 (7-8) : 503 - 512
  • [27] Short-term information pattern in optokinetic nystagmus amplitude time series
    Aasen, T.
    Goplen, F.
    Nordahl, S. H. G.
    JOURNAL OF VESTIBULAR RESEARCH-EQUILIBRIUM & ORIENTATION, 2013, 23 (02): : 71 - 75
  • [28] Spatial convergent cross mapping to detect causal relationships from short time series
    Clark, Adam Thomas
    Ye, Hao
    Isbell, Forest
    Deyle, Ethan R.
    Cowles, Jane
    Tilman, G. David
    Sugihara, George
    ECOLOGY, 2015, 96 (05) : 1174 - 1181
  • [29] Predicting Time Series from Short-Term High-Dimensional Data
    Ma, Huanfei
    Zhou, Tianshou
    Aihara, Kazuyuki
    Chen, Luonan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (12):
  • [30] The Ultra-short Term Prediction of Wind Power Based on Chaotic Time Series
    Yan Gangui
    Liu Yu
    Mu Gang
    Cui Yang
    Li Junhui
    Liu Jigang
    Meng Lei
    2012 INTERNATIONAL CONFERENCE ON FUTURE ELECTRICAL POWER AND ENERGY SYSTEM, PT B, 2012, 17 : 1490 - 1496