Deterministic Behaviour of Short Time Series

被引:0
|
作者
Alessandra Celletti
Claude Froeschlé
Igor V. Tetko
Alessandro E.P. Villa
机构
[1] Universitá di L'Aquila,Dipt. di Matematica Pura e Applicata
[2] Observatoire de Nice,Department of Biomedical Applications, IBPC
[3] Academy of Sciences of Ukraine,Laboratoire de Neuro–heuristique, Institut de Physiologie
[4] Université de Lausanne,undefined
关键词
Chaos; Deterministic behaviour; Lyapunov exponents; Computational methods; Nonlinear dynamics.;
D O I
10.1023/A:1004668310653
中图分类号
学科分类号
摘要
We present a new method for detecting a low‐dimensional deterministic character of very short discrete time series. The algorithm depends on two parameters, that can be selected according to a simple criterion. Experiments show that the method is sensitive to noise levels as low as 2%. In addition, our technique allows us to estimate the value of the largest Lyapunov exponent.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [1] Deterministic behaviour of short time series
    Celletti, A
    Froeschlé, C
    Tetko, IV
    Villa, AEP
    MECCANICA, 1999, 34 (03) : 147 - 154
  • [2] Search for deterministic chaos in ELM time series of ASDEX upgrade tokamak
    Ikonen, TMJ
    Dumbrajs, G
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (03) : 1115 - 1122
  • [3] Deterministic simulation of highly intermittent hydrologic time series
    Maskey, Mahesh L.
    Puente, Carlos E.
    Sivakumar, Bellie
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (10) : 2719 - 2732
  • [4] Evidence for deterministic nonlinear dynamics in financial time series data
    Small, M
    Tse, CK
    2003 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING, PROCEEDINGS, 2003, : 339 - 346
  • [5] Stochastic vs. deterministic approaches of modelling hydrological time series
    Jayawardena, AW
    STOCHASTIC HYDRAULICS 2000, 2000, : 469 - 477
  • [6] Time Series Forecasting Using Nonlinear Dynamic Methods and Identification of Deterministic Chaos
    Malyutina, Elena I.
    Shiryaev, Vladimir I.
    2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2014, 2014, 31 : 1022 - 1031
  • [7] Fractal dimensions of short EEG time series in humans
    Preissl, H
    Lutzenberger, W
    Pulvermuller, F
    Birbaumer, N
    NEUROSCIENCE LETTERS, 1997, 225 (02) : 77 - 80
  • [8] A new criterion to distinguish stochastic and deterministic time series with the Poincare section and fractal dimension
    Golestani, Abbas
    Jahed Motlagh, M. R.
    Ahmadian, K.
    Omidvarnia, Amir H.
    Mozayani, Nasser
    CHAOS, 2009, 19 (01)
  • [9] Deterministic Chaos Detection and Simplicial Local Predictions Applied to Strawberry Production Time Series
    Borrero, Juan D.
    Mariscal, Jesus
    MATHEMATICS, 2021, 9 (23)
  • [10] A Jacobian approach for calculating the Lyapunov exponents of short time series using support vector regression
    Krishnamurthy, Kamalanand
    Manoharan, Sujatha C.
    Swaminathan, Ramakrishnan
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (08) : 3329 - 3335