On the long-time dynamics of nonautonomous predator-prey models with mutual interference

被引:8
作者
de Luca R. [1 ]
机构
[1] Department of Mathematics and Applications 'R. Caccioppoli', University of Naples Federico II, Via Cinzia
关键词
Absorbing sets; Global stability; Mutual interference; Nonautonomous ODEs system;
D O I
10.1007/s11587-012-0129-1
中图分类号
学科分类号
摘要
The longtime behaviour of a nonautonomous bidimensional Hassell predator-prey model with mutual interference is investigated. The existence of an absorbing set in the phase space is shown, and necessary and sufficient conditions guaranteeing the nonlinear, global, asymptotic stability of the positive solutions have been found by using the Liapunov direct method. © 2012 Università degli Studi di Napoli "Federico II".
引用
收藏
页码:275 / 290
页数:15
相关论文
共 32 条
[1]  
Beretta, E., Fergola, P., Tenneriello, C., Ultimate boundedness for nonautonomous diffusive Lotka-Volterra patches (1988) Math. Biosci., 92 (1), pp. 29-53
[2]  
Fergola, P., Rionero, S., Tenneriello, C., Asymptotic stability of a perturbed Lotka Volterra system Proceedings of Vth International Conference "Waves and Stability in continuous media". Ser. Adv. Math. Appl. Sci, 4
[3]  
Capone, F., Rionero, S., Attractivity conditions for a perturbed Lotka Volterra model (1991) Proceedings of VIth International Conference "Waves and Stability in continuous media" Matematiche (Catania), 46 (1), pp. 55-63
[4]  
Fergola, P., Rionero, S., Tenneriello, C., On the stability of Lotka Volterra perturbed equations (1991) Atti Acc. Peloritana Pericolanti Cl. Sci. Fis. Natur., 48, pp. 235-256
[5]  
Redheffer, R., Nonautonomous Lotka-Volterra systems I (1996) J. Differ. Equ., 127 (2), pp. 519-541
[6]  
Redheffer, R., Nonautonomous Lotka-Volterra systems II (1996) J. Differ. Equ., 132 (1), pp. 1-20
[7]  
Ahmad, S., Extinction of species in nonautonomous Lotka-Volterra systems (1999) Proc. Am. Math. Soc., 127 (10), pp. 2905-2910
[8]  
Muroya, Y., Persistence and global stability for nonautonomous Lotka-Volterra delay differential systems (2002) Commun. Appl. Nonlinear Anal., 9 (3), pp. 31-45
[9]  
Teng, Z., Nonautonomous Lotka-Volterra systems with delays (2002) J. Differ. Equ., 179 (2), pp. 538-561
[10]  
Xu, R., Chaplain, M.A.J., Chen, L., Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with infinite delays (2002) Appl. Math. Comput., 130 (2-3), pp. 295-309