An Upbound of Hausdorff’s Dimension of the Divergence Set of the Fractional SchröDinger Operator On Hs(ℝn)

被引:0
作者
Dan Li
Junfeng Li
Jie Xiao
机构
[1] Beijing Technology and Business University,School of Mathematics and Statistics
[2] Dalian University of Technology,School of Mathematical Sciences
[3] Memorial University,Department of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2021年 / 41卷
关键词
The Carleson problem; divergence set; the fractional Schrödinger operator; Hausdorff dimension; Sobolev space; 42B37; 42B15;
D O I
暂无
中图分类号
学科分类号
摘要
Given n ≥ 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha > \tfrac{1}{2}$$\end{document}, we obtained an improved upbound of Hausdorff’s dimension of the fractional Schrödinger operator; that is, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\sup }\limits_{f \in {H^s}({\mathbb{R}^n})} {\dim _H}\left\{ {x \in {{\mathbb{R}^n}}:\;\mathop {\lim }\limits_{t \to 0} {e^{{\rm{i}}t{{( - \Delta )}^\alpha }}}f(x) \ne f(x)} \right\} \le n + 1 - {{2(n + 1)s} \over n}$$\end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{n}{{2(n + 1)}} < s \le \tfrac{n}{2}$$\end{document}
引用
收藏
页码:1223 / 1249
页数:26
相关论文
共 38 条
  • [1] Sjogren P(1989)Convergence properties for the time-dependent Schrödinger equation Ann Acad Sci Fenn Ser A I Math 14 13-25
  • [2] Sjölin P(2011)On the dimension of divergence sets of dispersive equations Math Ann 349 599-622
  • [3] Barceló J A(2002)Singular sets of Sobolev functions C R Math Acad Sci Paris 334 539-544
  • [4] Bennett J(2013)On the Schröodinger maximal function in higher dimension Proc Steklov Inst Math 280 46-60
  • [5] Carbery A(2016)A note on the Schrödinger maximal function J Anal Math 130 393-396
  • [6] Rogers K M(2015)An improved maximal inequality for 2D fractional order Schrödinger operators Studia Math 230 121-165
  • [7] Žubrinić D(1987)Regularity of solutions to the Schrödinger equation Duke Math J 55 699-715
  • [8] Bourgain J(2013)Nonlocalization of operators of Schrödinger type Ann Acad Sci Fenn Math 38 141-147
  • [9] Bourgain J(2000)A bilinear approach to cone multipliers. II Applications Geom Funct Anal 10 216-258
  • [10] Miao C X(1988)Schröodinger equations: pointwise convergence to the initial data Proc Amer Math Soc 102 874-878