An optimal theorem for the spherical maximal operator on the Heisenberg group

被引:0
作者
E. K. Narayanan
S. Thangavelu
机构
[1] Indian Institute of Science,Department of Mathematics
[2] Indian Statistical Institute,Stat
来源
Israel Journal of Mathematics | 2004年 / 144卷
关键词
Group Theory; Maximal Operator; Heisenberg Group; Surface Measure; Optimal Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{I}^n = \mathbb{C}^n \times \mathbb{R}$$ \end{document} be the Heisenberg group and μr be the normalized surface measure on the sphere of radiusr in ℂn. Let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Mf = \sup _{r > 0} \left| {f * \mu _r } \right|$$ \end{document}. We prove an optimalLp-boundedness result for the spherical maximal functionMf, namely we prove thatM is bounded onLp(In) if and only ifp>2n/2n−1.
引用
收藏
页码:211 / 219
页数:8
相关论文
共 7 条
  • [1] Mueller D.(2004)Singular spherical maximal operators on a class of two step nilpotent Lie groups Israel Journal of Mathematics 141 315-340
  • [2] Seeger A.(1997)Pointwise ergodic theorems for radial averages on the Heisenberg group Advances in Mathematics 127 307-334
  • [3] Nevo A.(1978)Problems in harmonic analysis related to curvature Bulletin of the American Mathematical Society 84 1239-1295
  • [4] Thangavelu S.(2000)Local ergodic theorems for K-spherical averages on the Heisenberg group Mathematische Zeitschrift 234 291-312
  • [5] Stein E.(undefined)undefined undefined undefined undefined-undefined
  • [6] Wainger S.(undefined)undefined undefined undefined undefined-undefined
  • [7] Thangavelu S.(undefined)undefined undefined undefined undefined-undefined