E9 exceptional field theory. Part I. The potential

被引:0
作者
Guillaume Bossard
Franz Ciceri
Gianluca Inverso
Axel Kleinschmidt
Henning Samtleben
机构
[1] Centre de Physique Théorique,Centre for Research in String Theory, School of Physics and Astronomy
[2] Ecole Polytechnique,undefined
[3] CNRS,undefined
[4] Université Paris-Saclay,undefined
[5] Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),undefined
[6] Queen Mary University of London,undefined
[7] International Solvay Institutes,undefined
[8] Univ Lyon,undefined
[9] Ens de Lyon,undefined
[10] Univ Claude Bernard,undefined
[11] CNRS,undefined
[12] Laboratoire de Physique,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Extended Supersymmetry; String Duality; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the scalar potential for the exceptional field theory based on the affine symmetry group E9. The fields appearing in this potential live formally on an infinite-dimensional extended spacetime and transform under E9 generalised diffeomorphisms. In addition to the scalar fields expected from D = 2 maximal supergravity, the invariance of the potential requires the introduction of new constrained scalar fields. Other essential ingredients in the construction include the Virasoro algebra and indecomposable representations of E9. Upon solving the section constraint, the potential reproduces the dynamics of either eleven-dimensional or type IIB supergravity in the presence of two isometries.
引用
收藏
相关论文
共 60 条
[21]  
Berman DS(2014)M-theory and Type IIB from a Duality Manifest Action JHEP 01 172-undefined
[22]  
Musaev ET(2016)Loops in exceptional field theory JHEP 01 164-undefined
[23]  
Thompson DC(2013)E8 duality and dual gravity JHEP 06 044-undefined
[24]  
Thompson DC(2014)Generalised Space-time and Gauge Transformations JHEP 08 050-undefined
[25]  
Musaev ET(2011)Double Field Theory Formulation of Heterotic Strings JHEP 06 096-undefined
[26]  
Lee K(2016)The exceptional story of massive IIA supergravity JHEP 08 154-undefined
[27]  
Strickland-Constable C(undefined)undefined undefined undefined undefined-undefined
[28]  
Waldram D(undefined)undefined undefined undefined undefined-undefined
[29]  
Hohm O(undefined)undefined undefined undefined undefined-undefined
[30]  
Samtleben H(undefined)undefined undefined undefined undefined-undefined