E9 exceptional field theory. Part I. The potential

被引:0
作者
Guillaume Bossard
Franz Ciceri
Gianluca Inverso
Axel Kleinschmidt
Henning Samtleben
机构
[1] Centre de Physique Théorique,Centre for Research in String Theory, School of Physics and Astronomy
[2] Ecole Polytechnique,undefined
[3] CNRS,undefined
[4] Université Paris-Saclay,undefined
[5] Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),undefined
[6] Queen Mary University of London,undefined
[7] International Solvay Institutes,undefined
[8] Univ Lyon,undefined
[9] Ens de Lyon,undefined
[10] Univ Claude Bernard,undefined
[11] CNRS,undefined
[12] Laboratoire de Physique,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Extended Supersymmetry; String Duality; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We construct the scalar potential for the exceptional field theory based on the affine symmetry group E9. The fields appearing in this potential live formally on an infinite-dimensional extended spacetime and transform under E9 generalised diffeomorphisms. In addition to the scalar fields expected from D = 2 maximal supergravity, the invariance of the potential requires the introduction of new constrained scalar fields. Other essential ingredients in the construction include the Virasoro algebra and indecomposable representations of E9. Upon solving the section constraint, the potential reproduces the dynamics of either eleven-dimensional or type IIB supergravity in the presence of two isometries.
引用
收藏
相关论文
共 60 条
[1]  
Hull CM(2007)Generalised Geometry for M-theory JHEP 07 079-undefined
[2]  
Pires Pacheco P(2008)M-theory, exceptional generalised geometry and superpotentials JHEP 09 123-undefined
[3]  
Waldram D(2011)Generalized Geometry and M-theory JHEP 06 074-undefined
[4]  
Berman DS(2013)The gauge structure of generalised diffeomorphisms JHEP 01 064-undefined
[5]  
Perry MJ(2013)Exceptional geometry and tensor fields JHEP 07 028-undefined
[6]  
Berman DS(2013)Non-gravitational exceptional supermultiplets JHEP 07 025-undefined
[7]  
Cederwall M(2013)Extended geometry and gauged maximal supergravity JHEP 06 046-undefined
[8]  
Kleinschmidt A(2008)Gauged Supergravities, Tensor Hierarchies and M-theory JHEP 02 044-undefined
[9]  
Thompson DC(2012)Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions JHEP 10 174-undefined
[10]  
Cederwall M(2013)Gauged supergravities in 5 and 6 dimensions from generalised Scherk-Schwarz reductions JHEP 05 161-undefined