Oscillatory integrals on unit square along surfaces

被引:0
|
作者
Jiecheng Chen
Dashan Fan
Huoxiong Wu
Xiangrong Zhu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Zhejiang University,Department of Mathematics
[3] University of Wisconsin-Milwaukee,Department of Mathematics
[4] Xiamen University,School of Mathematical Sciences
来源
关键词
Oscillatory integral; singular integral; unit square; surface; product space; 42B20; 42B10; 42B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let Q2 = [0, 1]2 be the unit square in two-dimensional Euclidean space ℝ2. We study the Lp boundedness of the oscillatory integral operator Tα,β defined on the set ℒ(ℝ2+n) of Schwartz test functions by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_{\alpha ,\beta } f(u,v,x) = \int_{Q^2 } {\frac{{f(u - t,v - s,x - \gamma (t,s))}} {{t^{1 + \alpha _1 } s^{1 + \alpha _2 } }}} e^{it - \beta _{1_s } - \beta _2 } dtds, $$\end{document} where x ∈ ℝn, (u, v) ∈ ℝ2, (t, s, γ(t, s)) = (t, s, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t^{p_1 } s^{q_1 } ,t^{p_2 } s^{q_2 } ,...,t^{p_n } s^{q_n } $$\end{document}) is a surface on ℝn+2, and β1 > α1, β2 > α2. Our results extend some known results on ℝ3.
引用
收藏
页码:49 / 59
页数:10
相关论文
共 50 条
  • [31] Multiparameter singular integrals and maximal operators along flat surfaces
    Cho, Yong-Kum
    Hong, Sunggeum
    Kim, Joonil
    Yang, Chan Woo
    REVISTA MATEMATICA IBEROAMERICANA, 2008, 24 (03) : 1047 - 1073
  • [32] Multiple parametric Marcinkiewicz integrals with mixed homogeneity along surfaces
    SHEN Jia-wei
    HE Shao-yong
    CHEN Jie-cheng
    Applied Mathematics:A Journal of Chinese Universities, 2023, 38 (03) : 413 - 428
  • [33] Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
    Daiqing Zhang
    Feng Liu
    Journal of Inequalities and Applications, 2014
  • [34] Multiple parametric Marcinkiewicz integrals with mixed homogeneity along surfaces
    Jia-wei Shen
    Shao-yong He
    Jie-cheng Chen
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 413 - 428
  • [35] Boundedness of Marcinkiewicz integrals with mixed homogeneity along compound surfaces
    Zhang, Daiqing
    Liu, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [36] A Method for Bounding Oscillatory Integrals in Terms of Non-oscillatory Integrals
    Greenblatt, Michael
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
  • [37] SQUARE MEANS VERSUS DIRICHLET INTEGRALS FOR HARMONIC FUNCTIONS ON RIEMANN SURFACES
    Masaoka, Hiroaki
    Nakai, Mitsuru
    TOHOKU MATHEMATICAL JOURNAL, 2012, 64 (02) : 233 - 259
  • [38] On trilinear oscillatory integrals
    Christ, Michael
    e Silva, Diogo Oliveira
    REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (02) : 667 - 684
  • [39] DAMPING OSCILLATORY INTEGRALS
    COWLING, M
    DISNEY, S
    MAUCERI, G
    MULLER, D
    INVENTIONES MATHEMATICAE, 1990, 101 (02) : 237 - 260
  • [40] ON THE COMPUTATION OF OSCILLATORY INTEGRALS
    LUKE, YL
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (02): : 269 - 277