On some functional inequalities for skew Brownian motion

被引:0
作者
A. T. Abakirova
机构
[1] Laboratoire de Mathématiques Paul Painlevé,
来源
Proceedings of the Steklov Institute of Mathematics | 2014年 / 287卷
关键词
Brownian Motion; Local Time; STEKLOV Institute; Sobolev Inequality; Standard Brownian Motion;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Poincaré and logarithmic Sobolev inequalities. We provide several constructions of skew Brownian motion; this is an example of diffusion with singular drift interesting from different points of view. We obtain inequalities for skew Brownian motion that naturally generalize the Gaussian case. It turns out that for skew Brownian motion the estimates depend on the local time of the process.
引用
收藏
页码:3 / 13
页数:10
相关论文
共 31 条
  • [1] Abakirova A T(2007)Analogues of the Poincaré-Chernoff inequality and the logarithmic Sobolev inequality for processes with independent increments Usp. Mat. Nauk 62 163-164
  • [2] Abakirova A T(2012)Functional inequalities on path spaces of processes with independent increments Usp. Mat. Nauk 67 191-192
  • [3] Bass R F(2005)One-dimensional stochastic differential equations with singular and degenerate coefficients Sankhyā 67 19-45
  • [4] Chen Z-Q(1997)Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces Electron. Commun. Probab. 2 71-81
  • [5] Capitaine M(2004)Entropies, convexity, and functional inequalities: On ϕ-entropies and ϕ-Sobolev inequalities J. Math. Kyoto Univ. 44 325-363
  • [6] Hsu E P(1985)Poincaré-type inequalities via stochastic integrals Z. Wahrscheinlichkeitstheor. Verw. Geb. 69 251-277
  • [7] Ledoux M(1981)A note on an inequality involving the normal distribution Ann. Probab. 9 533-535
  • [8] Chafaï D(2002)Limit behavior of the ‘horizontal-vertical’ random walk and some extensions of the Donsker-Prokhorov invariance principle Teor. Veroyatn. Primen. 47 498-517
  • [9] Chen L H Y(2000)Diffusion processes on graphs: Stochastic differential equations, large deviation principle Probab. Theory Relat. Fields 116 181-220
  • [10] Chernoff H(2005)Modified logarithmic Sobolev inequalities and transportation inequalities Probab. Theory Relat. Fields 133 409-436