Homogenization of Wall-Slip Gas Flow Through Porous Media

被引:0
作者
Erik Skjetne
Jean-Louis Auriault
机构
[1] Stanford University,Department of Petroleum Engineering
[2] Domaine Universitaire,Laboratoire Sols Solides Structures (3S), UJF, INPG, CNRS
来源
Transport in Porous Media | 1999年 / 36卷
关键词
Klinkenberg; wall-slip; Knudsen; gas flow; low pressure; Navier–Stokes; homogenization.;
D O I
暂无
中图分类号
学科分类号
摘要
The permeability of reservoir rocks is most commonly measured with an atmospheric gas. Permeability is greater for a gas than for a liquid. The Klinkenberg equation gives a semi-empirical relation between the liquid and gas permeabilities. In this paper, the wall-slip gas flow problem is homogenized. This problem is described by the steady state, low velocity Navier–Stokes equations for a compressible gas with a small Knudsen number. Darcy's law with a permeability tensor equal to that of liquid flow is shown to be valid to the lowest order. The lowest order wall-slip correction is a local tensorial form of the Klinkenberg equation. The Klinkenberg permeability is a positive tensor. It is in general not symmetric, but may under some conditions, which we specify, be symmetric. Our result reduces to the Klinkenberg equation for constant viscosity gas flow in isotropic media.
引用
收藏
页码:293 / 306
页数:13
相关论文
共 14 条
  • [1] Adzumi H.(1937)Studies on the flow of gaseous mixtures through capillaries: I. The viscosity of binary gaseous mixtures Bull. Chem. Soc. Japan 12 199-226
  • [2] Adzumi H.(1937)Studies on the flow of gaseous mixtures through capillaries: II. The molecular flow of gaseous mixtures Bull. Chem. Soc. Japan 12 285-291
  • [3] Auriault J.-L.(1991)Heterogeneous medium. Is an equivalent macroscopic description possible? Int. J. Engng Sci. 29 785-795
  • [4] Auriault J.-L.(1990)Porous deformable media saturated by a very compressible fluid: quasi-statics Eur. J. Mech., A/Solids 9 373-392
  • [5] Strzelecki T.(1975)Équations et phénomènes de surface pour l'écoulement dans un modeèle de milieu poreux Journal de Mécanique 14 73-108
  • [6] Bauer J.(1995)Sur l'homogénéisation des équations de Navier–Stokes à faible nombre de Reynolds C.R. Acad. Sci. Paris, Série I 320 245-251
  • [7] He S.(1975)On boundary conditions for fluid flow in porous media Int. J. Engng Sci. 13 923-940
  • [8] Ene H. I.(1969)Advances in theory of fluid motion in porous media Ind. Engng. Chem. 61 15-28
  • [9] Sanchez-Palencia E.(undefined)undefined undefined undefined undefined-undefined
  • [10] Firdaouss M.(undefined)undefined undefined undefined undefined-undefined