Positive Curvature Property for Sub-Laplacian on Nilpotent Lie Group of Rank Two

被引:0
作者
Bin Qian
机构
[1] Changshu Institute of Technology,Department of Mathematics and Statistics
[2] Fudan University,School of Mathematical Sciences
来源
Potential Analysis | 2013年 / 39卷
关键词
Γ; curvature; Heat kernel; Gradient estimates; Sub-Laplacian; Nilpotent Lie groups; 60J60; 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we concentrate on the sub-Laplace operator on the nilpotent Lie group of rank two, which is the infinitesimal generator of the diffusion generated by n Brownian motions and their \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{n(n-1)}2$\end{document} Lévy area processes, which is the simple extension of the sub-Laplacian on the Heisenberg group ℍ. In order to study contraction properties of the associated heat kernel, we show that, as in the cases of the Heisenberg group and the three Brownian motions model, the restriction of the sub-Laplace operator acting on radial functions (see Definition 3.5) satisfies a positive Ricci curvature condition (more precisely a CD(0, ∞ ) inequality), see Theorem 4.5, whereas the operator itself does not satisfy any CD(r, ∞ ) inequality. From this we may deduce some useful, sharp gradient bounds for the associated heat kernel. It can be seen a generalization of the paper (Qian, Bull Sci Math 135:262–278, 2011).
引用
收藏
页码:325 / 340
页数:15
相关论文
共 28 条
[1]  
Bakry D(2008)On gradient bounds for the heat kernel on the Heisenberg group J. Funct. Anal. 255 1905-1938
[2]  
Baudoin F(2009)The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds Math. Zeit. 263 647-672
[3]  
Bonnefont M(2012)Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality J. Funct. Anal. 262 2646-2676
[4]  
Chafaï D(2000)Hamilton-Jacobi theory and the heat kernel on Heisenberg groups J. Math. Pures Appl. 79 633-689
[5]  
Baudoin F(2005)Hypoelliptic heat kernel inequalities on the Heisenberg group J. Funct. Anal. 221 340-365
[6]  
Bonnefont M(2006)A universal bound on the gradient of logtithm of the heat kernel for manifolds with bounded Ricci curvature J. Funct. Anal. 238 518-529
[7]  
Baudoin F(1977)Principe de moindre action, propagation de la chaleur et estimees souselliptiques sur certains groupes nilpotents Acta Math. 139 95-153
[8]  
Bonnefont M(2010)Gradient estimates for the heat semigroup on Potential Anal. 33 355-386
[9]  
Beals R(2009)-type groups Int. Math. Res. Not. 13 2347-2373
[10]  
Gaveau B(2000)Geometric inequalities and generalized Ricci bounds on the Heisenberg group Ann. Fac. Sci. Toulouse Math. 9 305-366