On finite elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-algebras and in product algebras

被引:0
作者
Helena Malinowski
Martin R. Weber
机构
[1] Technische Universität Dresden,
关键词
Vector lattice; -Algebra; -Algebra; Finite element; Order unit; Multiplication; Orthomorphisms; Product algebra; 46B42; 47B07; 47B65;
D O I
10.1007/s11117-012-0207-3
中图分类号
学科分类号
摘要
Finite elements, which are well-known and studied in the framework of vector lattices, are investigated in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-algebras, preferably in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-algebras, and in product algebras. The additional structure of an associative multiplication leads to new questions and some new properties concerning the collections of finite, totally finite and self-majorizing elements. In some cases the order ideal of finite elements is a ring ideal as well. It turns out that a product of elements in an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-algebra is a finite element if at least one factor is finite. If the multiplicative unit exists, the latter plays an important role in the investigation of finite elements. For the product of special \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}-algebras an element is finite in the algebra if and only if its power is finite in the product algebra.
引用
收藏
页码:819 / 840
页数:21
相关论文
共 30 条
[1]  
Bernau SJ(1990)Almost Math. Proc. Camb. Philos. Soc. 107 287-308
[2]  
Huijsmans CB(1984)-algebras and J. Aust. Math. Soc. (Ser. A) 37 110-116
[3]  
Beukers F(1983)-algebras Math. Z. 183 131-144
[4]  
Huijsmans CB(2000)Calculus in Comment. Math. Univ. Carolinae. 41 747-759
[5]  
Beukers F(2003)-algebras J. Aust. Math. Soc. 75 23-40
[6]  
Huijsmans CB(2006)Unital embedding and complexification of Math. Nachrichten 279 495-501
[7]  
de Pagter B(2007)-algebras Math. Nachrichten 280 485-494
[8]  
Boulabiar K(2007)Products in almost Positivity 11 563-574
[9]  
Boulabiar K(2009)-algebras Positivity 13 145-163
[10]  
Chen ZL(1967)On products in lattice-ordered algebras Duke Math. J. 34 725-739