On a Fractional Monge–Ampère Operator

被引:0
|
作者
Caffarelli L. [1 ]
Charro F. [2 ]
机构
[1] Department of Mathematics, The University of Texas, 1 University Station C1200, Austin, 78712, TX
[2] Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona
基金
美国国家科学基金会;
关键词
Integro-differential equations; Monge–Ampère; Nonlinear elliptic equations;
D O I
10.1007/s40818-015-0005-x
中图分类号
学科分类号
摘要
In this paper we consider a fractional analogue of the Monge–Ampère operator. Our operator is a concave envelope of fractional linear operators of the form inf A∈ALAu, where the set of operators is a degenerate class that corresponds to all affine transformations of determinant one of a given multiple of the fractional Laplacian. We set up a relatively simple framework of global solutions prescribing data at infinity and global barriers. In our key estimate, we show that the operator remains strictly elliptic, which allows to apply known regularity results for uniformly elliptic operators and deduce that solutions are classical. © 2015, Springer International Publishing AG.
引用
收藏
相关论文
共 50 条
  • [31] An inequality for mixed Monge–Ampère measures
    Sławomir Dinew
    Mathematische Zeitschrift, 2009, 262
  • [32] Monge–Ampère equation on exterior domains
    Jiguang Bao
    Haigang Li
    Lei Zhang
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 39 - 63
  • [33] ON A FAMILY OF FULLY NONLINEAR INTEGRODIFFERENTIAL OPERATORS: FROM FRACTIONAL LAPLACIAN TO NONLOCAL MONGE-AMPÈRE
    Caffarelli, Luis A.
    Soria-Carro, Maria
    ANALYSIS & PDE, 2024, 17 (01): : 243 - 279
  • [34] A Priori Estimate for the Complex Monge–Ampère Equation
    Jiaxiang Wang
    Xu-Jia Wang
    Bin Zhou
    Peking Mathematical Journal, 2021, 4 (1) : 143 - 157
  • [35] A local regularity of the complex Monge–Ampère equation
    Zbigniew Błocki
    Sławomir Dinew
    Mathematische Annalen, 2011, 351 : 411 - 416
  • [36] OPTIMIZATION APPROACH FOR THE MONGE-AMPèRE EQUATION
    Fethi BEN BELGACEM
    Acta Mathematica Scientia(English Series), 2018, 38 (04) : 1285 - 1295
  • [37] The Monge–Ampère equation with Guillemin boundary conditions
    Daniel Rubin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 951 - 968
  • [38] Regularity of Solutions to the Quaternionic Monge–Ampère Equation
    Sławomir Kołodziej
    Marcin Sroka
    The Journal of Geometric Analysis, 2020, 30 : 2852 - 2864
  • [39] Hardy Spaces Associated with Monge–Ampère Equation
    Yongshen Han
    Ming-Yi Lee
    Chin-Cheng Lin
    The Journal of Geometric Analysis, 2018, 28 : 3312 - 3347
  • [40] On a Class of Linearizable Monge-Ampère Equations
    D. J. Arrigo
    J. M. Hill
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 115 - 119