Hydrogen bonding in goldichite, KFe(SO4)2⋅4H2O: structure refinement

被引:0
|
作者
Zhuming Yang
Gerald Giester
机构
[1] Chinese Academy of Sciences,Institute of Geology and Geophysics
[2] University of Chinese Academy of Sciences,Institut für Mineralogie und Kristallographie
[3] Universität Wien,undefined
来源
Mineralogy and Petrology | 2018年 / 112卷
关键词
Goldichite; Hydrogen bonding; Hydrated sulfate; Crystal structure; Oxidation zone of copper deposit;
D O I
暂无
中图分类号
学科分类号
摘要
The crystal structure of goldichite KFe(SO4)2⋅4H2O was determined on a single crystal from the Baiyinchang copper deposit, Gansu, China. [P121/c1, a = 10.395(2), b = 10.475(2), c = 9.0875(18) Å, β = 101.65(3)°, V = 969.1(3) Å3, Z = 4]. All non-H atoms were refined with anisotropic displacement parameters and positions of H-atoms were determined by difference Fourier methods and refined from X-ray diffraction data. The crystal structure of goldichite consists of corrugated sheets parallel to the (100) plane by sharing corners between FeO6 octahedra and SO4 tetrahedra. The interstitial potassium atom exhibits a [KO7(H2O)2] nine-fold coordination, which shares edges to form a column parallel to the c-axis and to build a slab with the corrugated sheet. These slabs are linked in the [100] direction through a network of hydrogen bonds. Three types of hydrogen bonds involve links of slabs: Ow(3)-H(3B)···O(1), Ow(6)-H(6B)···O(11) and Ow(9)-H(9B)···O(11). The FTIR spectrum of goldichite shows a strong absorption between ~3384 cm−1 and ~3592 cm−1, which is in accordance with the O-H···O distances derived from structure data.
引用
收藏
页码:135 / 142
页数:7
相关论文
共 50 条
  • [31] Noncentrosymmetric K2Mn3(SO4)3F2•4H2O and Rb2Mn3(SO4)3F2•2H2O with pseudo-KTP structures
    Zhou, Yang
    Li, Yanqiang
    Ding, Qingran
    Liu, Youchao
    Chen, Yangxin
    Liu, Xitao
    Huang, Xiaoying
    Li, Lina
    Zhao, Sangen
    Luo, Junhua
    CHINESE CHEMICAL LETTERS, 2021, 32 (01) : 263 - 265
  • [32] RE(SO4)[B(OH)4](H2O), RE(SO4)[B(OH)4](H2O)2, and RE(SO4)[B(OH)4](H2O)•H2O: Rare-Earth Borate-Sulfates Featuring Three Types of Layered Structures
    Wang, Wen-Wen
    Xu, Xiang
    Kong, Jin-Tao
    Mao, Jiang-Gao
    INORGANIC CHEMISTRY, 2018, 57 (01) : 163 - 174
  • [33] The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, a framework of (NHg4) tetrahedra with ordered (SO4) groups in the interstices
    Cooper, M. A.
    Abdu, Y. A.
    Hawthorne, F. C.
    Kampf, Anthony R.
    MINERALOGICAL MAGAZINE, 2016, 80 (05) : 869 - 875
  • [34] Hydrogen sulfates with disordered hydrogen atoms - Synthesis and structure of Li[H(HSO4)(2)](H2SO4)(2) and refinement of the structure of alpha-NaHSO4
    Werner, C
    Trojanov, S
    Worzala, H
    Kemnitz, E
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1996, 622 (02): : 337 - 342
  • [35] Crystal structures, thermal analysis and IR investigations of (C4H14N2O)SO4 and (C4H14N2O)SO4 • H2O
    Guerfel, Taha
    Jouini, Amor
    MATERIALS RESEARCH BULLETIN, 2007, 42 (01) : 149 - 158
  • [36] The crystal structure of Yb2(SO4)3•3H2O and its decomposition product, β-Yb2(SO4)3
    Mills, Stuart J.
    Petricek, Vaclav
    Kampf, Anthony R.
    Herbst-Imer, Regine
    Raudsepp, Mati
    JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (09) : 2322 - 2328
  • [37] Synthesis and Crystal structure of Poly{[Co(4,4'-bpy)(H2O)4]SO4·(4-abaH)2·3H2O}
    CHEN Hong-Ji② (Jinan University
    Chinese Journal of Structural Chemistry, 2005, (02) : 236 - 240
  • [38] The crystal structure of rapidcreekite, Ca-2(SO4)(CO3)(H2O)(4), and its relation to the structure of gypsum
    Cooper, MA
    Hawthorne, FC
    CANADIAN MINERALOGIST, 1996, 34 : 99 - 106
  • [39] Complex hydrogen bonding and thermal behaviour over a wide temperature range of kainite KMg(SO4)Cl.2.75H2O
    Borisov, Artem S.
    Siidra, Oleg, I
    Ugolkov, Valery L.
    Kuznetsov, Alexey N.
    Firsova, Vera A.
    Charkin, Dmitri O.
    Platonova, Natalia, V
    Pekov, Igor, V
    MINERALOGICAL MAGAZINE, 2022, 86 (01) : 37 - 48
  • [40] Crystal Structure and Properties of Rb4H2I2O10 · 4H2O
    G. V. Shilov
    Z. K. Nikitina
    Yu. A. Dobrovolskii
    L. S. Leonova
    A. V. Chernyak
    V. P. Tarasov
    L. O. Atovmyan
    Russian Journal of Coordination Chemistry, 2004, 30 : 759 - 764