Local well-posedness for relaxational fluid vesicle dynamics

被引:0
|
作者
Matthias Köhne
Daniel Lengeler
机构
[1] Heinrich-Heine-Universität Düsseldorf,Mathematisches Institut
[2] Universität Regensburg,Fakultät für Mathematik
来源
Journal of Evolution Equations | 2018年 / 18卷
关键词
Stokes equations; Fluid dynamics; Biological membrane; Canham–Helfrich energy; Lipid bilayer; Local well-posedness; Maximal regularity; Primary 35Q92; Secondary 35A01; 35A02; 35Q74; 35K25; 76D27;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the local well-posedness of a basic model for relaxational fluid vesicle dynamics by a contraction mapping argument. Our approach is based on the maximal Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p$$\end{document}-regularity of the model’s linearization.
引用
收藏
页码:1787 / 1818
页数:31
相关论文
共 50 条
  • [11] LOCAL WELL-POSEDNESS FOR A HIGHER ORDER BOUSSINESQ TYPE EQUATION
    Zhong, Long
    Li, Shenghao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, : 3625 - 3645
  • [12] Local well-posedness for hyperbolic-elliptic Ishimori equation
    Wang, Yuzhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (09) : 4625 - 4655
  • [13] Local well-posedness of drift-diffusion equation with degeneracy
    Mai, La-Su
    Fu, Xiaonan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [14] Local well-posedness for a fractional KdV-type equation
    Roger P. de Moura
    Ailton C. Nascimento
    Gleison N. Santos
    Journal of Evolution Equations, 2022, 22
  • [15] Local Well-Posedness for the Magnetohydrodynamics in the Different Two Liquids Case
    Frolova, Elena
    Shibata, Yoshihiro
    MATHEMATICS, 2022, 10 (24)
  • [16] Local well-posedness for the sixth-order Boussinesq equation
    Esfahani, Amin
    Farah, Luiz Gustavo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 230 - 242
  • [17] THE GLOBAL WELL-POSEDNESS FOR THE COMPRESSIBLE FLUID MODEL OF KORTEWEG TYPE
    Murata, Miho
    Shibata, Yoshihiro
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 6313 - 6337
  • [18] Local Well-Posedness of a Dispersive Navier-Stokes System
    Levermore, C. David
    Sun, Weiran
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 517 - 576
  • [19] Local well-posedness for a fractional KdV-type equation
    De Moura, Roger P.
    Nascimento, Ailton C.
    Santos, Gleison N.
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)
  • [20] Local Well-Posedness for the Hyperelastic Rots Equation in Besov Space
    Shenggui LIU
    JournalofMathematicalResearchwithApplications, 2016, 36 (02) : 213 - 222