Mercury’s resonant rotation from secular orbital elements

被引:0
作者
Alexander Stark
Jürgen Oberst
Hauke Hussmann
机构
[1] DLR,
[2] Institute of Planetary Research,undefined
[3] Moscow State University for Geodesy and Cartography,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2015年 / 123卷
关键词
Mercury; Spin-orbit coupling; Laplace plane; MESSENGER; Ephemeris; Secular elements;
D O I
暂无
中图分类号
学科分类号
摘要
We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of (87.96934962±0.00000037)days\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(87.96934962 \pm 0.00000037)\,\hbox {days}$$\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839±0.000000028)∘/day\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}$$\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation.
引用
收藏
页码:263 / 277
页数:14
相关论文
共 63 条
  • [11] Duncombe RL(2012)Mercury’s moment of inertia from spin and gravity data J. Geophys. Res. 117 E00L09-246
  • [12] Masursky H(2012)Modeling the obliquity of Mercury Planet Space Sci. 60 274-145
  • [13] Morando B(2013)The influence of orbital dynamics, shape and tides on the obliquity of Mercury Adv. Space Res. 52 2085-18
  • [14] D’Hoedt S(1969)Generalized Cassini’s laws Astron. J. 74 483-347
  • [15] Noyelles B(1976)Orbital resonances in the Solar System Annu. Rev. Astron. Astrophys. 14 215-1241
  • [16] Dufey J(1981)Measurement accuracies required for the determination of a Mercurian liquid core Icarus 48 143-373
  • [17] Lemaitre A(2005)The free precession and libration of Mercury Icarus 178 4-220
  • [18] Einstein A(2006)The proximity of Mercury’s spin to Cassini state 1 from adiabatic invariance Icarus 181 338-337
  • [19] Folkner WM(1965)Rotation of the planet Mercury Nature 206 1240-544
  • [20] Williams JG(2007)Long-period forcing of Mercury’s libration in longitude Icarus 187 365-undefined