Mercury’s resonant rotation from secular orbital elements

被引:0
作者
Alexander Stark
Jürgen Oberst
Hauke Hussmann
机构
[1] DLR,
[2] Institute of Planetary Research,undefined
[3] Moscow State University for Geodesy and Cartography,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2015年 / 123卷
关键词
Mercury; Spin-orbit coupling; Laplace plane; MESSENGER; Ephemeris; Secular elements;
D O I
暂无
中图分类号
学科分类号
摘要
We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet’s measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury’s interior structure. In particular, we derive a mean orbital period of (87.96934962±0.00000037)days\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(87.96934962 \pm 0.00000037)\,\hbox {days}$$\end{document} and (assuming a perfect resonance) a spin rate of (6.138506839±0.000000028)∘/day\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(6.138506839\pm 0.000000028){}^{\circ }/\hbox {day}$$\end{document}. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101–135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury’s rotation.
引用
收藏
页码:263 / 277
页数:14
相关论文
共 63 条
  • [1] Archinal BA(2011)Report of the IAU working group on cartographic coordinates and rotational elements: 2009 Celest. Mech. Dyn. Astron. 109 101-135
  • [2] A’Hearn MF(1965)Rotational period of the planet Mercury Nature 208 575-230
  • [3] Bowell E(1980)Report of the IAU working group on cartographic coordinates and rotational elements of the planets and satellites Celest. Mech. 22 205-603
  • [4] Conrad A(2009)Determination of an instantaneous Laplace plane for Mercury’s rotation Adv. Space Res. 44 597-839
  • [5] Consolmagno GJ(1915)Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie Sitzungsberichte K. preuss. Akad. Wiss. 47 831-81
  • [6] Courtin R(2014)The planetary and lunar ephemerides DE430 and DE431 Interplanet. Netw. Prog. Rep. 196 1-238
  • [7] Colombo G(1966)Spin-orbit coupling in the Solar System Astron. J. 71 425-336
  • [8] Davies ME(1989)A numerical experiment on the chaotic behaviour of the Solar System Nature 338 237-714
  • [9] Abalakin VK(2009)A Mercury orientation model including non-zero obliquity and librations Celest. Mech. Dyn. Astron. 105 329-286
  • [10] Cross CA(2007)Large longitude libration of Mercury reveals a molten core Science 316 710-2101