On string theory on deformed BTZ and TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textrm{T}\overline{\textrm{T}} $$\end{document}

被引:0
作者
Soumangsu Chakraborty [1 ]
Amit Giveon [2 ]
Akikazu Hashimoto [3 ]
机构
[1] Institut de Physique Théorique,Racah Institute of Physics
[2] Université Paris-Saclay,Department of Physics
[3] CNRS,undefined
[4] CEA,undefined
[5] The Hebrew University,undefined
[6] University of Wisconsin,undefined
关键词
AdS-CFT Correspondence; Black Holes in String Theory; Gauge-Gravity Correspondence; Long Strings;
D O I
10.1007/JHEP04(2024)134
中图分类号
学科分类号
摘要
Aspects of superstring theory on deformed BTZ black holes, formed near k NS5 branes by p fundamental strings, and single-trace TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} holography, are presented. The excitation energy of a singly wound long string plus its contribution to the energy of the black hole, 1/p fraction of the black-hole energy, is the same as that in TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed CFT2 with c = 6k. This supports the claim that the black hole can be thought of as a state in a symmetric product of p CFT2’s of central charge 6k, where the black-hole energy is split equally among all p factors. A comment on superstring theory on deformed global AdS3 is also presented.
引用
收藏
相关论文
共 27 条
  • [1] Aharony O(2000) AdS Phys. Rep. 323 183-undefined
  • [2] Gubser SS(2000) AdS JHEP 12 003-undefined
  • [3] Maldacena JM(2005) AdS Nucl. Phys. B 719 3-undefined
  • [4] Ooguri H(2017)CFT JHEP 12 155-undefined
  • [5] Oz Y(2017) AdS Nucl. Phys. B 915 363-undefined
  • [6] Argurio R(2023)1 JHEP 07 113-undefined
  • [7] Giveon A(2022)5 Eur. Phys. J. C 82 913-undefined
  • [8] Shomer A(1994) CFT Phys. Rep. 244 77-undefined
  • [9] Giveon A(2022)undefined JHEP 08 244-undefined
  • [10] Kutasov D(1999)undefined JHEP 04 017-undefined