Quasi-periodic solutions of the Heisenberg hierarchy

被引:0
作者
Zhu Li
Xianguo Geng
机构
[1] Xinyang Normal University,School of Mathematics and Statistics
[2] Zhengzhou University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
The Heisenberg hierarchy; Hyperelliptic curve; Quasi-periodic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
The Heisenberg hierarchy and its Hamiltonian structure are obtained respectively by use of the zero curvature equation and the trace identity. With the help of the Lax matrix we introduce an algebraic curve Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_{n}$$\end{document} of arithmetic genus n, from which we define meromorphic function ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and straighten out all of the flows associated with the Heisenberg hierarchy under the Abel–Jacobi coordinates. Finally, we get the explicit theta function representations of solutions for the whole Heisenberg hierarchy as a result of the asymptotic properties of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}.
引用
收藏
相关论文
共 87 条
[1]  
Krichever IM(1976)Algebraic-geometric construction of the Zaharov-Sabat equations and their periodic solutions Dokl. Akad. Nauk SSSR 227 394-397
[2]  
Krichever IM(1977)Integration of nonlinear equations by the methods of algebraic geometry Funct. Anal. Appl. 11 12-26
[3]  
Dubrovin BA(1981)Theta functions and nonlinear equations Russi. Math. Surv. 36 11-92
[4]  
Date E(1976)Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice Prog. Theor. Phys. Suppl. 59 107-125
[5]  
Tanaka S(1981)The periodic cubic Schrödinger equation Stud. Appl. Math. 65 113-158
[6]  
Ma YC(1986)Real finite-gap regular solutions of the Kaup-Boussinesq equation Theor. Math. Phys. 66 19-31
[7]  
Ablowitz MJ(1985)Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation Duke Math. J. 52 329-377
[8]  
Smirnov AO(1995)Finite genus solutions to the Ablowitz-Ladik equations Commun. Pure Appl. Math. 48 1369-1440
[9]  
Previato E(1999)Periodic and almost-periodic potential in inverse problems Inverse Prob. 15 R117-R144
[10]  
Miller PD(2001)Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians Inverse Prob. 17 1017-1042