Generalized derivations of Hom–Poisson color algebras

被引:0
作者
Valiollah Khalili
机构
[1] Arak University,Department of Mathematics, Faculty of Sciences
来源
São Paulo Journal of Mathematical Sciences | 2022年 / 16卷
关键词
Hom–Leibniz algebras; Generalized derivations; Quasiderivations; Centeroids; 17A37; 17B40; 17B75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study some basic properties of the generalized derivation algebra of a multiplicative Hom–Poisson color algebra. Furthermore, we give the definitions of the generalized derivations, quasiderivations, center derivations, centroid and quasicentroid derivations of the multiplicative Hom–Poisson color algebra P.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}.$$\end{document} In particular, we give some useful properties and connections between these derivations. We also prove that QDer(P)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QDer({\mathcal {P}})$$\end{document} can be embedded as derivations in a larger multiplicative color Hom–Poisson algebra. Finally, we conclude that the derivation of the larger multiplicative color Hom–Poisson algebra has a direct sum decomposition when P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}$$\end{document} is centerless.
引用
收藏
页码:786 / 802
页数:16
相关论文
共 44 条
[1]  
Attan S(2018)Some charactrizations of color Hom-Poisson algebras Hacet. J. Math. Stat. 47 1552-1563
[2]  
Abdaoui K(2015)Constructions and cohomology of Hom-Lie color algebras Commun. Algebra 43 4581-4612
[3]  
Ammar F(2010)Hom-Lie superalgebras and Hom-Lie admissible superalgebras J. Algebra 324 1513-1528
[4]  
Makhalouf A(2014)Modules over color Poisson algebras J. Gen. Lie Theory Appl. 8 1-16
[5]  
Ammar F(2017)Generalized derivations of BiHom-Lie algebras J. Gen. Lie Theory Appl. 11 1-936
[6]  
Makhalouf A(2013)Generalized derivations of Lie color algebras Results Math. 63 923-271
[7]  
Bakayoko I(2016)Generalized derivations of Lie triple systems Open Math. 14 260-103
[8]  
Bh A(1964)On the deformation of ring and algebras Ann. Math. 79 59-361
[9]  
Chen L(2006)Deformations of Lie algebras using J. Algebra 295 314-216
[10]  
Ma Y(2003)-derivations Lett. Math. Phys. 66 157-235