Lieb–Robinson Bounds for the Toda Lattice

被引:0
作者
Umar Islambekov
Robert Sims
Gerald Teschl
机构
[1] University of Arizona,Department of Mathematics
[2] University of Vienna,Faculty of Mathematics
[3] International Erwin Schrödinger Institute for Mathematical Physics,undefined
来源
Journal of Statistical Physics | 2012年 / 148卷
关键词
Toda lattice; Lieb–Robinson bound;
D O I
暂无
中图分类号
学科分类号
摘要
We establish locality estimates, known as Lieb–Robinson bounds, for the Toda lattice. In contrast to harmonic models, the Lieb–Robinson velocity for these systems do depend on the initial condition. Our results also apply to the entire Toda as well as the Kac-van Moerbeke hierarchy. Under suitable assumptions, our methods also yield a finite velocity for certain perturbations of these systems.
引用
收藏
页码:440 / 479
页数:39
相关论文
共 50 条
  • [41] Toda lattice with a special self-consistent source
    G. U. Urazboev
    [J]. Theoretical and Mathematical Physics, 2008, 154 : 260 - 269
  • [42] The rapidly decreasing solution of the Cauchy problem for the Toda lattice
    A. Kh. Khanmamedov
    [J]. Theoretical and Mathematical Physics, 2005, 142 : 1 - 7
  • [43] Backlund Transformation for the BC-Type Toda Lattice
    Kuznetsov, Vadim
    Sklyanin, Evgeny
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [44] Toda lattice with a special self-consistent source
    Urazboev, G. U.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 154 (02) : 260 - 269
  • [45] The Algebraic Integrability of the Quantum Toda Lattice and the Radon Transform
    Kaoru Ikeda
    [J]. Journal of Fourier Analysis and Applications, 2009, 15 : 80 - 100
  • [46] Equilibrium Spacetime Correlations of the Toda Lattice on the Hydrodynamic Scale
    Guido Mazzuca
    Tamara Grava
    Thomas Kriecherbauer
    Kenneth T.-R. McLaughlin
    Christian B. Mendl
    Herbert Spohn
    [J]. Journal of Statistical Physics, 190
  • [47] Comultiplication for shifted Yangians and quantum open Toda lattice
    Finkelberg, Michael
    Kamnitzer, Joel
    Pham, Khoa
    Rybnikov, Leonid
    Weekes, Alex
    [J]. ADVANCES IN MATHEMATICS, 2018, 327 : 349 - 389
  • [48] On the periodic Toda lattice with a self-consistent source
    Babajanov, Bazar
    Feckan, Michal
    Urazboev, Gayrat
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 1223 - 1234
  • [49] On the evolution of scattering data under perturbations of the Toda lattice
    Bilman, D.
    Nenciu, I.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2016, 330 : 1 - 16
  • [50] Algebraic Complete Integrability of the a (2) 4 Toda Lattice
    Ndi, Bruce Lionnel Lietap
    Dehainsala, Djagwa
    Dongho, Joseph
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20